
The Distributed Interactive Simulation
(DIS) Lethality Communication Server

Volume II: User and Programmer’s Manual

Geoffrey C. Sauerborn

AFL-TR- 1775

i

19990325 063

Approved for public release; distribution is unlimited.
Daa Qum =8i?E- 1

.

.

IRIXTM and Open GLTM are trademarks of of Silicon Graphics, Inc.

Linux@ is a registered trademark of Linus Torvalds.

POSIX@ is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Silicon Graphics@ and IRIS@ are registered trademarks of Silicon Graphics, Inc.

Sun Solaris@ is a registered trademark of Sun Microsystems Compter Company.

VR Link@ is a registered trademark of MK

UNIXTM is a trademark of Bell Laboratories.

Windows NT@ is a registered trademark of Microsoft Corporation.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Abstract

Volume 1 presented the distributed interactive simulation lethality
communication server, a client-server approach to handling battle simulation
lethality. Although Volume 1 explained the approach and its benefits and
limitations, it presented no information about how to set up, run, or modify
the server. In this volume, these vital (yet sometimes tedious) details are
provided.

ii

TABLE OF CONTENTS

LIST OF FIGURES _ . v

LIST OF TABLES . vii
.

1. P U R P O S E . 1

2. INTRODUCTION.. 1

3. QUICK START INSTALLATION . 1

3.1 Unpacking and Installing 2
3.2 Compiling.. 2
3.3 Test Programs .. 2

4. THE SERVER’S ARCHITECTURE 4

4.1 Server Application-ARL DIS Manager 7
4.2 Server Application-The DIS Server 7
4.3 Server Application-The DIS Monitor 8

5. INITIALIZING THE SERVER 8

5.1 Server Initialization Files 8

6. COMMUNICATING WITH THE SERVER . 10

7. EXPANDING THE SERVER 11

7.1 Adding a New Vulnerability Taxonomy Description 11
7.2 Adding a New (look-up) Table Format. 26
7.3 Adding Remote Access for a New Vulnerability Methodology. 33

8. SUMMARY .._......._..._. 48

REFERENCES................._.._.._.._.....__._._..______ 5 1

APPENDICES

A. Initial Compilation’s Sample Output 53
B. Manual “Man” Pages . 59

DISTRIBUTION LIST _ . _ . _ . . . _ 169

REPORT DOCUMENTATION PAGE . . . _ . . . _ . . _ _ . _ 173

. . .
111

iv

INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure &

1. DIS Lethality Server Architecture 5

2. A Modified View of the Server Architecture 11

3. vl_meth.h Code Changes-Adding a New Vulnerability Method 16

4. V/L API: Lethality Data Delivery, Parameters, and Reader Layers. 17

5. Adding an API for a New Vulnerability Method vl_binary_ArlDIS_ProbAll_NoNet() 24

6. “tbl_fmts.h” Used for Data V/L Data Reading and Initialization 30

7. Example of Records for a Meta Data File 31

8. Prototypes of Data Source Initialization and Reader Functions (in “tbl_rdrs.h”) . . 32

9. Modifications of DIS Monitor to Listen for New PDU Types 36

10. Removing Collision From DIS Manager’s PDU “Filtering” 36

11. Defining Client-Server Protocol (adding tokens to vls_toke.h) 39

12. Enabling vlserver to Parse a New Query Type (service_query_to_db()) 44

13. Sample ASCII Query String (sent to the vlserver) 44

14. Change (in dis_mon) to Accept New Queries 45

15. A Function to Process Collision Damage Queries (using BINARY method) 47

V

.

INTENTIONALLY LEFT BLANK

vi

I -

LIST OF TABLES

Table Page

1. MFK “Probability” Space . 9

2. Application’s Interface to the Server (VLSclient) . 11

3. Some Result Delivery APIs (for the MFK methodology) 18

4. Newly Defined Result Delivery APIs (for the BINARY methodology) . . . _ 19

vii

INTENTIONALLY LEFT BLANK

. . .
Vlll

.

.

THE DISTRIBUTED INTERACTIVE SIMULATION (DIS)
LETHALITY COMMUNICATION SERVER

VOLUME II: USER AND PROGRAMMER’S MANUAL

1. PURPOSE

This report is a user and programmer’s manual for the distributed interactive simulation

(DIS) lethality communication server (the server). The report can be used to learn how to
initialize, operate, or modify the server. Instructions for modifying the server are written for an

expert level audience; therefore, only experienced “C” programmers should attempt this.

2. INTRODUCTION

The ARL DIS lethality communication server is a combination of application program
interface (API) libraries and utility programs that make it possible to allow multiple applications
to access a single lethality data source. The server is designed for the DIS environment. As such,
the server returns lethality results as described by (the DIS) Institute of Electrical and Electronics
Engineers (IEEE) Standard 1278.1 [1,2]. Furthermore, the server expects input in DIS standard
protocol data unit (PDU) format (although the equivalent input may be greatly condensed at more
abstracted layers within the APIs). The DIS lethality server has demonstrated a data latency of

less than 1000th of a second and thus may be useful for a wide variety of applications, including
real time [3,4]. This project was jointly sponsored by the Army Modeling & Simulation Office
(as a 1997 Army modeling improvement program project [AMIP]) and by the U.S. Army

Research Laboratory (ARL).

3. QUICK START INSTALLATION

The server is designed to run in the UNIXTM environment but might be portable to most

POSIX@ systems with an American National Standards Institute (ANSI) C compiler and the
“csh” or “tcsh” command line interpreter shell.* This includes most UNIXTM-like systems and

WindowsTM NT@. So far, the server has only been tested under IRIXTM, Linux@, and Sun
Solaris@ operating systems.

lThe server requires an environmkntal variable to be set (VLS HOME). This is best accomplished by running the
server or client application under the “csh” or “tcsh” commandline interfaces.

1

3.1 Unnacking and Installing

The server comes packaged in a “tar” format archive. This archive needs to be unpacked in

a convenient location accessible by server users, to be used by those who actually wish to run the

server and by those who merely wish to have access to its libraries to create client applications.

In the following examples, we assume that the location will be /usr/Zocal/DIS/Lserver, but the

actual location chosen is not significant.

Change to the directory where you wish to install the server and extract the tar archive

there. For example, suppose the tar archive is in the file /home/myst@server_vl23. tar. To

install the server in /usr/local/DIS/Lserver,

mkdir /usr/local/DIS/
mkdir /usr/local/DIS/Lserver
cd /usr/local/DIS/Lserver
tar -xf /home/mystuff/lserver_v123.tar

3.2 Comniling

Assuming no errors were encountered when the tar archive was unpacked, we are now

ready to compile the server. Change to the server’s “home” (installation) directory and type

“./compile.sh”:

cd /usr/local/DIS/Lserver
./compile.sh

By default, the compiling script uses “cc” to compile source code. This may be changed by

using a CC=compiZer argument to the script. For example, to compile using /usr/gnu/bidgcc,

type

./compile.sh CC=/usr/bin/gnu/wc

Output for this procedure should appear similar to that shown in Appendix A.

3.3 Test Programs

Before running a client application, it will be necessary to define the environmental variable

VLS_HOME. This is set to the server’s installation directory. In the C shell (csh), this is

accomplished by typing the command

set VLS_HOME=/usr/local/DIS/Lserver
setenv VLS_HOME /usr/local/DIS/Lserver

2

These same commands may be added to your $home/cshrc (C-shell initialization “run
command”) file so that you will not have to retype these commands every time you run the csh.
Once VLS_HOME is set, the shell replaces the string “$VLS_HOME” with the argument to
which it was assigned.

The first test program simply tests that the server is able to communicate with a simple

client application. It is executed with the command

$VLS_HOME/bin/test_Xsimple.csh

The output should be similar to the following:

Tests connection to the simple server.
Uses Xwindows xterm (xterm must be in the current path).
Enter key when ready. . .

sleeping for 5 seconds...
4 . : .
3 . . .
2 . . .
1 . . .
starting client program...
----__-_____--___----__-----_------___---~_-----~
Client seems to be speaking with vlserver. - OK.
__--________________-______-_____--____---_____--

The next test program is more complicated since it requires a number of processes to be
sequentially or asynchronously executed. As with the simple test program, connectivity
between the server and client is verified. This time, however, the client will also query the server
for the results to a specific fire/detonation event. In order for the server to know about the event,

the ARL DIS manager is launched, DIS PDUs are broadcast to the DIS network, and the DIS
monitor provided with the server is run to monitor the PDUs. If errors are reported, it might be

because one or more of these programs was not running when it should have because of simplistic
“sleep” delays built into the test program. If this is the case, you might try to run the test

program again or change the amount of time the test program “sleeps” between launch times of
the various modules. This test program is executed with the following command:

$VLS_HOME/bin/test_Xall.csh

In addition to several windows opening for the various modules, the output should be similar to

the following:

3

-_---___
Tests connection to the VLserver attached to the DIS monitor
Will also run ARL DIS Manager in order to do so.
Uses Xwindows xterm (xterm must be in the current path).
__

Enter key when
sleeping for 5
4 . . .
3 . . .
2 . . .
1 _ . .
sleeping for 5
4 . . .
3 . . .
2 . . .
1 . . .

ready. . .
seconds...

seconds...

sleeping for 20 seconds...
starting client program...
############# T H E query W A S ###############
QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 135 2 1005 135 2 12
############# T H E answer W A S ###############
"5 Received from server:l: 4 0 '
##

This means that: 4 and 0 are the RESULT and FLAG codes,
respectively, returned by the server

RESULT code: 4
RESULT Meaning:PS_MFK_NODAMAGE - No Damage

FLAG code: 0 = Success.
FLAG Meaning:

0 Success.

The pkh source for the referenced entity and threat
munition (as defined in the DAMAGE_SOURCE_META_DATA_FILE)
was successfully found, interpreted, and used in
the calculation of the returned (VL_Result) value.

---______________________________-____-___--__---

DIS Monitor seems to be speaking with vlserver. - OK.
---_______________________________________--__---

This concludes the execution of the test programs. The following section explains the different

modules and data flow that occur during the execution of these test programs (and through the

server in general).

4. THE SERVER’S ARCHITECTURE

Figure 1 displays a view of the server’s architectural layout. Boxes enclosed by solid lines

represent independent processes. Each of these processes may be run on separate computers.

The one exception is the DIS lethality server and DIS monitor; these two processes must

reside on the same host machine, as indicated by the dotted box. Dashed lines separating the

4

vulnerability/lethality (VL) API and Data Manager indicate that these represent DIS lethality

server service layers (APIs) that reside within a parent process.

DIS Network Traffic
. . . L . . .

I UDP link

t .- .L __ ““, I - *I ““i ; 1
Shared
Memory Link I

1: ;F
I :

-; DIS Monitor tt_
t, I ’
t I I

I :
;--___-_i ; -

1 VLA PI I;

;_______j i
t ,, ’

I
I I
I :
t :

i Data Manager :I ;
I
I Ir
1” 1 ;

i Single Hosf Computer t _ _ _ _ - _ _ 1 :
.1111..11~..1111.111,.., I,.. 111111111..?

Figure 1. DIS Lethalitv Server Architecture.

Not shown in Figure 1 is the clients’ connectivity to the DIS network. To connect to the DIS

network, clients may choose to use the ARL DIS Manager (which is freely provided with the
lethality server), a commercially available product (such as VR Link@), or their own in-house DIS
networking library. It is not the responsibility of or within the scope of the lethality server to

decide how clients connect with the DIS network.

An explanation of the components follows:

l The ARL DIS Manager monitors DIS PDUs and sends them its own clients. In this case,
the DIS manager has one client (the DIS Monitor). Because the DIS monitor is currently

only concerned with MFK2 vulnerability resulting from munitions, it only requests to receive
(from the ARL DIS manager) entity state, fire, and detonation PDUs (since these are the only

2MFK - system damage in terms of mobility, fire power, and catastrophic damage; see Table 1 (Section 5.1) for a
further explanation of MFK.

5

PDUs necessary to calculate MFK results). The DIS monitor may request other PDU types

from the DIS manager as necessary,

9 The DIS Monitor monitors all fire/detonation events (along with information concerning
any entities involved). It maintains cached records of these events. In this way, the
parameters involved will be available when the DIS Lethality Server queries it for the
results of a particular detonation event.

Upon receipt of a query from the DIS lethality server, the DIS monitor calls the VL API

which sets the appropriate parameters that describe the conditions at the time of the detonation

(e.g., munition type, velocity, etc.). (The API function vZpqrint_aZZqarams~ may be called to

show where the parameter values were set; see vlparam(3) in Appendix B.) The VL API then

calls the Data Manager API which provides data (presumably those data are the vulnerability

analysis results). The VL API layer then returns these data in a format appropriate to query.

The Data Manager API manages many types of low level data. It maintains records of
where to find data sources for each entity and threatening munition. It keeps track of which
functions are used to initialize (or read each type of data source into memory) and (once
initialized) which function to use to extract results (from the cached memory data structures). It
is also responsible for maintaining which DIS enumerations are used to describe a particular
vehicle, munition, or other item.

The job of the DIS Lethality Server (vlserver) component is relatively simple. This

component merely passes client queries to the DIS Monitor and returns the DIS monitor’s

results to the client.

The blocks in Figure 1 labeled as “Client” represent clients of the DIS lethality server. The
current maximum number of clients that the server will accept is 32. This arbitrary limit may be

changed by modifying the value of the variable Max_Num._CZients in the source file
$VLS_HOME/src/Server/vlserver.c. In the case of our test programs (from Section 3.3), just one

client was active. These test programs were simply shell scripts that launch the various server
applications programs. (These programs are shown as separate processes in Figure 1.) When
these applications are not being launched from a shell script, the proper order of execution must
be followed. When started, the server components should be executed in the following order:

1st (or 2nd) ARL DIS manager.
2nd (or 1st) DIS lethality server.
3rd DIS monitor.
4th client(s) (to DIS lethality server).

6

l

The AlU DIS manager must be running before the DIS monitor is running. This is because the

DIS monitor is a client of the DIS manager. The DIS lethality server must be running before the DIS
monitor because the server creates a common shared memory. Furthermore, administrative details
concerning how to connect to this shared memory location are communicated to the DIS monitor
through a transmission control protocol/intemet protocol (TCP/IP) link, of which the DIS monitor
is a client. After this initial network “hand shaking,” the remainder of the communication occurs
through shared memory. Finally, clients of the DIS lethality server may join and leave as they wish.

In the following three sections, we explain how to execute and use these applications manually.

4.1 Server Annlication-APL DIS Manager

The ARL DIS manager must be running before the DIS monitor is started. The DIS
manager may be started by typing

$VLS_HOME/bin/dis_mgr.exe -x off

The -X off option turns off the DIS exercise identification (ID) number filtering. (This allows
multiple DIS exercises to be monitored.) If you would like to monitor only one exercise, use the

-x option followed by the exercise number. Other command line options may be seen by using

the -help command line option or by viewing the dis_mgr(l) “man” page in Appendix B. DIS

manager source code and documentation are presented in $VLS_HOME/src/Libs/DIS.

4.2 Server Annlication-The DIS Server

The DIS server must be started before the DIS monitor. To run the server, type the
following command line:

$VLS_HOME/bin/vlserver.exe

If you receive an error message similar to

pkg_permserver: bind: Address already in use
init_server() : Failed.
another vulnerability/lethality (V/L) server is probably already
using the Port: 4976. Use the "-P" flag to specify a different
server port.

This most likely means that the server is still running (perhaps as a background process or in

another window). Command line options and more details about the server are given in the
vlserver(1) manual page in Appendix B. In order for the server to respond to DIS vulnerability

7

queries, the DIS monitor must also be running. Starting the DIS monitor is explained in the next

section.

4.3 Server Annlication-The DIS monitor

To run the DIS monitor, type the following command line:

$VLS_HOME/bin/dis_mon.exe

You may receive an error message that includes information similar to

Connecting to DIS manager on YOUR_HOST_NAME...
pkg_open: client connect: Connection refused
Unable to connect to DIS manager on YOUR_HOST_NAME
cleaning up.

The DIS monitor needs to connect to the ARL DIS manager. This error message most likely
means that the DIS manager was not started or has stopped or that a path (network route) to the
computer where it is running could not be found. There are command line options that allow the
DIS monitor to look for the ARL DIS server at other computer IP addresses or sites. For
information about these and other command line options and details about the DIS monitor, see
the dis_mon(l) “man” page in Appendix B.

5. INITIALIZING THE SERVER

This section explicitly notes server starting options, location and formats of initialization

files, and other preparatory information required to start the server.

5.1 Server Initialization Files

Recall that the environmental variable VLS_HOME set from Section 3.3 is set to the
“home” directory where the DIS lethality server was installed. Initialization files are located in

the Data&m subdirectory relative to VLS_HOME. That is, initialization data files are located in
the directory

${VLS_HOME}/Data/Init/

The main initialization file in this directory is vls_db_init.ini. This file tells the server where to

find all the other initialization files. Only three initialization files are identified by vls_db_init.ini:

8

1. A DIS enumeration file-these are the names and equivalent DIS numerical
representation for entities, munitions, etc. More than 6,000 IEEE standard enumerations are
provided [2].

2. A DIS auxiliary enumeration file-intended for “additional” entities added for a
particular exercise.

3. A lethality “meta data” file-this tells the server all it needs to know about the lethality
data to be delivered upon demand. The meta data file contains meta data records.

A lethality meta data record identifies several items for the server. First, it specifies which
type of vulnerability/lethality (V/L) analysis method is used when a particular threat attacks a
certain target. Then it identifies where the data are given that describe the damage state outcomes

(with respect to the type of vulnerability analysis method in question). Finally, the meta data
record identifies which library functions are used to read the data source. (Identifying a library
function allows flexibility in how data are stored and retrieved. Vulnerability data need not be
just static “look-up” tables. They may be a reference to a network connection or even a
separately running application that calculates results “on the fly”.)

It was stated that the lethality meta data file identifies the “V/L analysis method”. One

such example of an analysis method is the mobility, firepower, catastrophic (MFK) method for
describing damage state outcomes (as seen in Table 1).

Table 1. MFK “Probability” Space

Outcome Outcome Explanation

MULL Mobility and only mobility kill.

FKILL Firepower and only firepower kill.

MFKILL Mobility and firepower kills.

KKILL Catastrophic kill.

NoDamage No Additional damage inflicted.

In the MFK method, the set of all outcomes of a target-threat interaction are defined in terms

of these conditions. Since these sets are normally treated as probabilistic events, it is necessary
that the complete set of outcomes contain the universe of all possible events (so that their
probabilities may sum to one). Any number of analysis methods are possible, provided that
mathematical and probabilistic rules are adhered to and a reasonable V/L taxonomy is applied. It is
the responsibility of higher level applications (e.g., war games) to know what these V/L results

9

mean and to treat them in an appropriate manner. V/L server technology has potentially powerful
implications to the analysis community, provided the V/L metrics and applications that use them
(e.g., war games) are properly coupled [5]. Currently, the server just implements the MFK
method that is an “end game” description of kill probability given a hit (“PKH”). How another
method is incorporated into the server is explained in Section 7. Other specifics concerning the
formats for the vls_db_init.ini, DIS enumerations, and the meta data records are presented in the
vls_db_init(5) manual page in Appendix B.

6. COIIXMUNICATING WITH THE SERVER

This section shows in a general sense how application programs may communicate with an

initialized and running server. For the explicit details, see the manual pages for hewer(l) and

vlsclient(3) in Appendix B.

The V/L server has a group of API calls specifically designed for high level applications
(such as war games and simulators). (That is, these applications are high level as viewed fi-om the
perspective of executing high fidelity vulnerability calculations.) This API group is called the
VLSClient (or vlsclient(3)) library. For war games and other high level applications, this interface
to the V/L server provides the functionality and fidelity needed for detailed vulnerability analysis;
yet, this is accomplished with a relatively simple interface. These functions communicate directly
with a running DIS VL server module (vlserver) as shown in Figure 2 (a modified view of the
server architecture that was displayed in Figure 1).

To avoid confusion, the VLSclient library was not shown in Figure 1. The VLSclient

calls are actually compiled in a client’s application. This is shown in Figure 2 where the font size
of the dashed lines separates Client from VLSclient. While the API may appear large in this

figure, the interface itself is quite simple, comprising only the four functions shown in Table 2.

Client applications need only open (vls_openO), a connection to the server. They may
send (vls_sendO) and read (vZs_readO) the answer to as many queries as they like and may close
(vls_close()) the connection when appropriate. The syntax for sending and receiving answers to
queries is explained in the vlserver(1) and vlsclient(3) manual pages of Appendix B.

.

10

.

.

1 VLAH :

1 Dau Mmwr
I

:

1.. I
t--e _ _ _ ,

I

Single Host Computer :

*.........___.-em_..-............

Figure 2. A Modified View of the Server Architecture.

Table 2. Application’s Interface to the Server (VLSclient)

API Purpose

vls_open() open a connection with the vl server.

vls close0 close a connection.

vls send0 send a message (usually a query) to the server.

vls_read() read data (usually an answered query) from the server.

7. EXPANDINGTHESERVER

From a programming point of view, the server is designed to be expandable. However,

many extensions can be accomplished without programming (by manipulating system parameters
and initialization data; see Section 5). Other enhancements require additional software. This
section focuses on modifications that require changes in the software.

7.1 Adding a New Vulnerabilitv Taxonomy Descrintion (vulnerability method)

In Section 5, we described a vulnerability method implemented in the DIS V/L server (the
MFK method, Table 1). The server’s overall architecture is designed to accommodate other

11

vulnerability descriptions upon demand by following the approach outlined in this section (some
assembly is required).

7.1.1 What is a Vulnerability Description?

In the MFK method, all outcomes of a target-threat interaction are defined in a finite set.
Since outcomes in these sets are normally treated as probabilistic events, the complete set of
outcomes must contain the universe of all possible events (so that their probabilities may sum to
one). Other methods of describing a system’s vulnerable state may be defined (with more or less
fidelity) in the same manner (e.g., a simple binary methodology with two states, “dead” or

“alive”). That is, the outcome of a V/L analysis will result in the subject entity being classified as

either “dead” or “alive”. Both the MFK and the dead/alive taxonomies are “vulnerability

descriptions”. They describe a finite (yet comprehensive) set of outcomes that describe a

system’s performance capabilities following the occurrence of some event. However, as far as
the V/L server is concerned, it is not necessary for probabilities to be associated with each
outcome. For instance, another vulnerability description could be a list of components. These
components could be identified as functional or nonfunctional. It would then be the

responsibility of the calling application to simulate the system’s behavior when only certain
specified components were working. The process just described follows a very high fidelity
vulnerability methodology known as “degraded states” [6,7,8].

7.1.2 Why the Server Needs to Know Which Vulnerability Description is Used

The server needs to know which data to deliver to a client (and in what format). If a client

simulator is designed to operate using an MFK method, it would be meaningless to send this
simulator degraded states or any other V/L description. Secondly, the server needs to know
which battlefield environmental parameters to monitor (in order to initialize conditions for the
vulnerability calculation).

How then does the server distinguish between vulnerability methods and how does a client
communicate its wishes to the server? The short answer is that we first incorporate the
vulnerability method into the server, then select a protocol so that clients may query according to
that vulnerability description. In the next section, we follow the steps for “folding” a new
vulnerability method into the server. This involves adding new APIs to the V/L API layer.
Later, in Section 7.3, we see how to establish a query-answer protocol (between a client and the
DIS server), which will allow remote access to these new APIs.

12

.

7.1.3 Incorporating a New Vulnerability Method Into the Server

The first step is to edit data structures in the vl_meth.h “include” file. By way of example,

suppose we wish to add a new vulnerability method that describes a vehicle or system as strictly
“alive” or “dead”. Let us call this a BINARY method. First, we will edit the file

$VLS_HOME/src/l)b/vl_meth.h and add the lines shown as bold in Figure 3. (The code in Figure

3 that is not bold was already present before any changes were made.)

Starting on line 32 of vl_meth.h of Figure 3, we see that base enumerations are created for the

new (BINARY) vulnerability description. The names of these base enumerations are preceded by a
double underscore “ “. The reason behind this is to force the final revision of these names (for-
subsets within the vulnerability description) to start with an enumeration of zero (0). The result is
that the first element name will have an internal value of zero (0), the second one (l), the third two
(2), and so on. In this way, when probabilities are returned by a (newly created) lethality server
API for every possible outcome in a vulnerability description set, they may all be returned in a
single array. The elements of that array may be referenced (in order) by using the names defined for
each outcome in the vulnerability description. (Look ahead to the final revision of the names

defined on lines 42 and 43.)

In Section 7.1.2, we noted that the server needs to know which data to monitor on the virtual
battlefield in order to have the proper parameters available for the lethality calculation. The next
section of code we turn our attention to (on line 104) is modified so that this may occur. Here, we

are adding a new enumeration for “collision” type interactions. The enumerations already defined (in

the data type VLSetParam_t), starting on line 86, are used to inform the server’s V/L APIs which
parameters are significant for a particular calculation. These parameters are applicable for any type
of vulnerability methodology (e.g., MFK or BINARY). On line 104, we define the internal

enumeration VL_PARAM_SET_COLLISION to inform server APIs to prepare data parameters for

damage resulting from collision. Damage resulting from munition threats (both direct and indirect
fire) were already defined on lines 89-90. Later (in Figure 5), we shall see how server APIs use this
information to prepare initial conditions for a lethality calculation.

The VLSetParam_t enurnerations (defined between lines 86 and 107) are internal values and
only have meaning within the V/L server code itself. It is also necessary for the server to be able
to associate these internal values with external representations. This association is made in the

VL_Meth_List[] array defined in Figure 3 on lines 119 through 140. The character string “DIS
Collision” is associated with our newly defined vulnerability parameter type on line 136 of
vl_meth.h (Figure 3). The server looks for these string representations when it reads the external

13

/* SLY: vl_meth.h,v 0.6 1997/08/21 17:08:58 geoffs Exp geoffs $ */
#ifndef VL_METH_H
#define VL__METH_H

typedef enum _mfk_result_enums 1
_PS_LOWER_BOUND = -3,

PS_ERROR = -2,
_PS_MFK_LOWER_BOUND = -1,
PS_MFK_M = 0, /* start at zero so it can be 1st element in an array*/
PS_MFK_F,
PS__~_~ I
PS_i=CK,
PS_MFK_NODAMAGE,

/* if more Probability spaces are added, then
* we will have to add make the _mfk_result_enums
* hidden enumerations (like: ’ _PS_MFK_M "1
* and add upper an lower bounds for that result
* type (like: _PS_MFK_LOWER_BOUND,)
* then we do this:
* # define PS_MFK_M (_PS_m_M-_PS_MFK_LOW'ER_BCUND+l) (* 0 *1
* # define PS_MFf_F (_PS_.MFK_F-_PS_MFK_LOW'ER_BOUND+l) (" 1 *)
* # define PS_MFK_MF (_PS_MFK_MF-_PS_MFK_LOWER_BOuND+l) (* 2 *)
* . . .
*
* an array is dimensioned:
* all_types_ps_mfk[PS_MFK_UPPER_BOuND 1

.

*/
_PS_MFK_UPPER_BOUND,

_PS_BINARY_LOWER_BOUWD,

_PS_BINARY_DEAD,
_PS_BINARY_ALIVE,

_PS_BINARY_UPPER_BOUND,

PS-UPPER_BOUND
} VL_Result;

#define PS_BINARY_DEAD (_PS_BINARY_DEAD- 1
#define PS_%INARY_ALIVE (_PS_BINARY_ALIV%-

- _PS_BINARY_LOWER_BOUND)/* 0 */
l-_PS_BINARY_LOWBR_BOUND)/* 1 */

#ifdef VL_METH_C
struct _VL_Result_strings_t (

VL_Result id;
char *string;

1;
static struct _VL_Result_strings_t _VL_Result_strings [I= C

{ _PS_LOWER_BOUND, "_PS_LOWER_BOUND" 1,
I PS_ERROR, "PS_ERROR"),

{_PS_MFK_LOWER_BOUND, “_PS_~_LO=-~~“}r

:
PS__==KM , "PS_MFF_M" 1,
PS_MFLF , "PS_MFK_F" 1,

C Ps_m_~ I "PS_MFK_MF" 1,

:
PS_m_K , "PS_MFK_K" 1,
PS_MFK_NODAMAGE, "PS_MFK_NODAMAGE" I,

(_PS_MFK_LOWER_BOUND, "_PS_MFK_UPPER_BCUND"1,

{ _PS_UPPER_BOUND, "_PS_UPPER_BOUND" 1

14

/* add a BINARY Vulnerability Methodology */

{__PS_BINARY_LOWER_BOUND, "_PS_BINARY_LOWBR_BOUND")r

1 PS_BINARY_DEAD, "PS_BINARY_DEAD" 1,

(. PS_BINARY_ALIVE, "PS_BINARY_ALIVE" 1,

{__PS_BINARY_LOWER_BOUND, "_PS_BINARY_UPPER_BOUND"),

{ _PS_UPPER_BOUND, "_PS_UPPER_BOUND" 1

1;
#endif

/*
- VL_Meth data type.

.

*
* type used to indicate which data sources (inputs) are sufficient
* to set the VL parameters in order to be able to return the
* correct result from the lookup table (or other data source).
*I
typedef enum {

_VL_INPUT_ENUMS_BEGIN = 0 /* below lowest boundary */

VL_PARAM_SET_METH_DIS_HitToKill
: VL_PAFAM_SET_METH_DIS_Prox.Eill

/*
* VISetParam_t == VL_PAPAM_SET_METH_DIS_HitToKill
* (or VL_PARAM_SET_METH_DIS_Proflill)
* Indicates that passing the DIS PDUS
* Enity State (target)
* Enity State (firer)
* FirePDU
* DetonationPDU
* shall be sufficient to set the VL parameters to return the
* correct result from the lookup table (or other data source).
*/

I VL_PARAN_SET_COLLISION

I _vL_INpuT_ENuMs_END /* upper boundary */
) VLSetParam_t ;

typedef struct _vl_meth_struc I
VLSetParam_t id; /*Analysis input Parameter Methodology Identifier */
char *name; /* String Identifier for this method

* (used in the Meta V/L Table list)
* "DAMAGE_SOURCE_META_DATA_FILE"
*/

} VL_Meth;

#ifdef VL_METH_C
/*
* VL_Meth_List[] identify the which inputs are needed
* (e.g. for DIS - which PDUs are needed)
* and it also is used to identify what
* special procedures or processes are
* required handling to handle the inputs
* vulnerability calculation (e.g. when
* "DIS HitToKill" is being used, then
* the munition *MUST* hit the target to
* have ANY effect.

15

*/
static

#endif

VL_Meth VL_Meth_List[l = {
{ _VL_INPUT_-_-BEGIN, NULL}

I { VL_PARWI_SET_METH_DIS_HitToKill , "DIS HitToKill")
, { VL_PAR?&I_SET_XETH_DIS_ProxKill , "DIS ProxKi.11" }

, (VL_PARAM_SET_COLLISION, "DIS Collision" }

I I _vLIImJL-_~, ml /* upper boundary */

Figure 3. g_meth.h Code Changes-Adding a New Vulnerabilitv Method.

lethality “meta data” records (described in Section 5.1). A sample lethality meta data file (the

DAMAGE_SOURCE_META_DATA_FILE) is shown on the vls_db_init(5) manual page of

Appendix B. Specifically, the third field of a DAMAGE_SOURCE_META_DATA_FILE
contains the text string that associates a set of (initial condition) parameters with a vulnerability

data source that requires those parameters. In the meta data file excerpt (shown near the end of the

vls_db_init(5) manual page and repeated in Figure 7), “DIS HitToKill” is displayed as the string

identifying the vulnerability initial condition parameter requirements. dn line 133 of Figure 3, we

can see that this external string is associated with the internal enumeration

VL_PARAM_SET_METH_DIS_HitToKill.

Next, we show how the server internally uses the enumerations (to pass the proper

parameters to server V/L APIs) and how multiple vulnerability methodologies are accommodated.

7.1.3.1 How the Server Accommodates Multiple Vulnerability Methodologies and
Multiple Types of Parameters

When a new vulnerability method is created, new API routines also have to be

created to deliver the new type of data.

1. They set the appropriate parameters that describe the conditions at the time a

lethal event occurs (e.g., munition type, terminal velocity, etc.);

2. Once these parameters are set, the delivery routine must then call the appropriate

lethality analysis algorithm (this could be as simple as a table look-up function); and

These routines accomplish the following objectives:
.

16

3. They finally return the data (in a form and format that is appropriate for that
vulnerability method) to the calling function. This architecture is depicted in Figure 4 where we
see a data delivery layer, a lethality data reader (table look-up) layer, and a vulnerability
parameter layer between them. The layers seen in Figure 4 are actually sub-layers that fall within

the larger V/L API layer, which was shown in Figure 1.

VL API layer

I
I

I
I

I
I Result Delivery Routines sub-byer I

I
I
I Step 1. Data deliver layer I I

I
I
I
I
I
I
I
I
I Step2.
I
I
I
I
I
I
I
I
I

sets VL Parketers

J

Vulnerability Parameters sub-layer

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

__________ ______________-- _,,--J

Figure 4. V/L API: Lethalitv Data Deliverv. Parameters. and Reader Lavers.

Because the Result Delivery sub-layer needs to set values in the Vulnerability

Parameters sub-layer, routines in the Result Delivery sub-layer must have prior knowledge of
all the environmental information necessary to complete lethality calculation for the vulnerability
method in use. For example, in order to describe the results of a munition impact, the MFK
methodology requires information from the DIS fire, detonation, and entity state PDUs.
Therefore, these PDUs are passed to all Result Delivery sub-layer routines that service the MFK
methodology. We may examine prototypes of some implemented MFK delivery routines (shown
in Table 3). (These APIs are documented in detail in the VI(~) manual page of Appendix B.)
Notice that each routine has a VLSetParam_t enumeration as its first argument. This first argument

(VLSetParam_t itype) informs the called API in what form the environmental variables will appear.
That is, it tells the function which arguments will be substituted for the “. . .” seen in Table 3.

17

Table 3. Some Result Delivery APIs (for the MFK methodology)

Thus far, the server only has two possible values of type VLSetParam_t (namely,

VL_PARAM_SET_METH_DIS_HitToKill and VL_PARAM_SET_METH_DIS_ProxKill).

Each of these parameter setting indicators informs the server to expect DIS fue, detonation, and

entity state PDU arguments to follow as the remaining arguments to the function call. They also

inform the server that a “munition” is the damage-causing mechanism. (The delivery routines will

then proceed to set “munition” type variables in the Vulnerability Parameters sub-layer by

using these passed PDU arguments.)

However, we could easily define a new VLSetParam_t type that tells the delivery

routines to expect some other type of arguments (in order to return an MFK result based on

different input parameter formats). For example, non-munition damage (such as damage caused

by a collision between moving vehicles) could be accommodated by adding a new VLSetParam_t
type (e.g., VL_PARAM_SET_METH_DIS_COLLISION) in which the resulting delivery

routines would now expect “collision” type variables (as the remaining arguments). In the DIS

environment, a combination of collision and entity state PDUs would suffice as arguments. The

delivery routines could then return MFK results based on these different damage-causing

mechanisms (provided that valid data sources existed in the “Table Look-Up” sub-layer that

described MFK damage resulting from those mechanisms [e.g., vehicular collisions]).

7.1.3.2 Adding V/L Layer API Routines for a New Vulnerability Method

.

We now return to the sample task-adding to the V/L API’s Result Delivery sub-

layer a new vulnerability method that describes an entity’s vulnerability state as strictly “alive”

or “dead” (our “BINARY” vulnerability method).

18

First, we need to decide what values are useful to be returned by the BINARY

method APIs. These values are then returned by the new V/L API functions we will write. In
this case, we shall have several returned types. A function will be written for each type. Using
this approach, we outline a new set of APIs in Table 4. We can follow the function-naming
pattern already used in the MFK APIs (shown in Table 3).

Table 4. Newly Defined Result Delivery APIs (for the BINARY methodology)

ANSI C Prototype Declaration (for the BINARY Methodology)

float* vl_binary_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . . 1;

double _vl_binary_ArlDIS_ProbDEAD_NoNet(VLSetParam_t itype, . ..I.

double _vl_binary_ArlDIS_ProbALIVE_NoNet(VLSetParam_t itype, . ..I.

vl_binary_ArlDIS_Result_NoNet(int*flg,.....) ;VL_Result

Briefly, the specific purpose of each API is as follows:

double _vl_binary_ArlDIS_ProbDEAD_NoNet(VLSetParam_t itype, . ..).

returns the probability that the outcome of the event results in a “DEAD” state for the system in
question.

double _vl_binary_ArlDIS_ProbALIVE_NoNet(VLSetParam_t itype, . ..).

returns the probability that the resulting outcome of the event is an “ALIVE” (or non-DEAD)

state of the system in question.

float* vl_binary_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . .);

returns an array containing the probabilities of all possible outcomes occurring. The array elements
are indexed according to the internal definitions we established in the vl_meth.c file (Figure 3, lines
42 and 43). Namely, the “[PS_BINARY_ALIVE]” element of the array contains the probability
that the outcome of the event results in an “ALIVE” (or non-DEAD) state of the system in
question. Similarly, “[PS_BINARY_DEAD]” indexes the probability of a “DEAD” state.

VL_Result vl_binary_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, . ..).

determines the probability of each event occurring, then randomly draws an outcome from the set

of possible events. The outcomes are drawn according to the distribution established by the

19

probabilities. The answer returned is of type VL_Result. Therefore, the only allowed results

returned by this API are PS BINARY-ALIVE and _PS_BINARY_DEAD, as we established- -
in lines 34 and 35 of Figure 3. In fact, any result not falling between _PS_BINARY_LOWER_BOUND

and PS- -BINARY_UPPER_BOUND should be considered invalid. For example, if

P(PS_BINARY_ALIVE)=.75 and P(PS_BINARY_DEAD) = .25, then about 75% of the time, a

VL_Result of _PS_BINARY_ALIVE will be returned (and _PS_BINARY_DEAD will be

returned 25% of the time).

Each of these APIs will read the passed parameters, use those parameters to set initial

conditions (in the Vulnerability Parameter sub-layer), call the vulnerability analysis routine (in

the Table Look-up sub-layer), and return the result. By way of example, we will concentrate on

the API vl_bina~_ArlDIS_ProbAll_NoNet () . The other APIs will follow a similar pattern.

vl_binary_ArlDIS_ProbAll_NoNet() willretumanarrayofflOatingpOint

numbers that represent the probabilities of achieving the two kill levels (dead or alive). When

called, this function’s first argument (itype) could be any of the VLSetParam_t enumerations

we defined on lines 86 through 107 of Figure 3. Figure 5 displays a sample ANSI C function

showinghow vl_binary_ArlDIS_ProbAll_NoNet() couldbeimplemented.

On line 9 of Figure 5, we define a default outcome (binaryPS_HasNoEf f ect) that is

returned when an exception occurs in which we know that there will be no additional damage to the

entity or component being threatened. Later (on line 140), we shall see how this default outcome

shall be used to prevent an erroneous result from being returned during certain conditions.

The next significant portion of the code we note is on line 59 where we determine what

input parameters are required in order to establish the proper initial conditions for the vulnerability

calculation. From lines 61 through 74, the “collision” initial condition parameter is handled. We see

that when “collision” is the damage mechanism being evaluated, the collision PDU and the entity

state PDUs must be provided as arguments to the API. The entity state PDUs that are provided

are for both the entity whose vulnerability is being evaluated (shown as “tgt” on line 66) and the

entity that is colliding with it (colliding-entity). The order in which these arguments are

provided is significant. Following retrieval of the arguments (on lines 66 through 68), these PDUs

are used to set parameters in the Vulnerability Parameter sub-layer “VLParam”. (The VLParam

layer is shown on Figure 4 and documented in the manual page VLParam(3) in Appendix B.)

Source code for the function (vlp_setp_all_Collision_Frm_DIS 0) shown on line 71 is not

provided. Its purpose is to decompose the PDUs passed to it, extract applicable information from

them, and use that information to set the appropriate variables in the VLParam layer. It is assumed

20

#include <stdlib.h>
#include cstdarg.h>

#include "~1.h"
#include "vl_meth.h"
#include "v1param.h"
#include "metatb1s.h"

static float binaryPS_HasNoEffect[]={ O., 1.);
/*
* recall that PS_BINARY_DEAD = 0

PS_BINARY_ALIVE = 1
therefore binaryPS_HasNoEffect[l=(O., 1.1;
is structured so that the first (zero'th element)
may be indexed by PS_BINARY_DEAD (i.e.
binaryPS_HasNoEffect[PS_BINARY_DBADl).

- vl_binary_ArlDIS_ProbAll_NoNetO
*
* float * vl_binary_%-lDIS_ProbAll_NoNet(VLSetParam_t itype, . . .)
*
* This function returns a static array containing probabilities of
* certain kill levels.
*
* The first parameter argument is of type VISetParam_t.
*
* This type is used to indicate which data sources (inputs)
* are sufficient to set the VL parameters in order to be able
* to return the correct result from the lookup table
* (or other data source). These indicated data sources (inputs)
* shall then be the 2nd, 3rd, 4th, . . . etc. parameter arguments
* to the function.
*
* RETURNS:
*
* An array containing the probability of all possible outcomes.
* The array el-ements are
*
*
* Array Element (index)
* Element Value
* _----_- ---------_-----
* 0 PS_BINARY_DBAD
*1 PS_BINARY_ALIVB
*/

defined as follows:

Value Meaning
___________-----____-------~-----
Probability that the subject is dead
Probability of not being dead.

float * vl_binary_ArlDIS_ProbAll_NoNet(VLSetParaKt itype, .-.
{ va_list ap;

static char *whoami="vl_binary_ArlDIS_ProbAll_NoNet() ";
float *ret;
int missed-me, error, do_vl_calc, ok_to_c.ruery;

ok-to-query = 0; /* false */
ret = NULL;
error = 0;
va_start(ap, itype);

switch (itype) {

case VL_PARAM_SET_COLLISION:
EntityStatePDU *tgt, *colliding_entity;
CollisionPDU *collision;

21

/* extract the 2nd, 3rd, and 4th arguments */

tgt = va_arg(ap, EntityStatePDU *);
colliding-entity = va_arg(ap, EntityStatePDU *);
collision = va_arg(ap, CollisionPDU *);

vlp_zero_all_params(); /* initialize paramters */
vlp_setp_all_Collision_Frm_DIS(tgt, colliding-entity, collision);
ok-to-query = 1:

break;

case VL_PARAM_SET_METR_DIS_HitToKill:
case VL_PARAM_SET_METH_DIS_ProxKi.ll:

1
EntityStatePDU *tgt, *shooter;
FirePDU *fire;
DetonationPDU *det;

/* extract the 2nd, 3rd, 4th, and 5th arguments */
tgt = va_arg(ap, EntityStatePDU * 1;
shooter = va_arg(ap, EntityStatePDU * 1;
fire = va_arg(ap, FirePDU *I;
det = va_arg(ap, DetonationPDU *);

/* test to see that we know what type of target is present */
if (tgt==NULL) {

_rpt_error (RE_TGT_UKNOWN , whoami);
++error;

} else if (det==NULL) 1
_rpt_error (RE_THREATuKNowN , whoami);
++error;

I

if (error==O) {
missed-me = FALSE;

if (itype == VL_PAPAM_SET_METH_DIS_HitToKill) {
/*
* See if we can

* ignore the detonation based on the result field.
*
*/
if (TRUE == vl_mfk_directFireIsAHit(det->detonation_result))

missed-me = FALSE;
else

missed-me = TRUE;
1

do_vl_calc=FALSE;
if (error == 0) {

if (missed-me == TRUE) (:
/* NOT a direct entity irqoact */
switch(itype) I

case VL_PARAM_SET_EiETB_DIS_HitToKill:
do_vl_calc=FALSE;/* leave as false */
/*
* we know we missed with a hit-to-kill
* threat. So we attempt to lookup
* the (wrong) answer according
* to the vl parameters.
* But we do return a result.
*/
ret = mfkPS_HasNoEffect;
break;

case vI_PARAM_SET_METH_DIS_ProxKi11:

22

.

/* we don't care if it did. miss - talc anyway. */
do_vl_calc=TRUE;
break;

default:
cprint(CH_WARN,

"%s: switch missing case for method type %d\n",itype);
break;

1
1 else (

do_vl_calc=TRUE;/* no errors an we hit tgt! */
1

1
if (do_vl_calc) { /* tgt is hit */
vlp_zero_all_paramsO; /* initialize paramters */
vlp_setp_all_Munition_Frn_DIS(tgt, shooter, fire ,det);

/*
* vlp_setp_all_Munition_Frm_DIS()
* will have set VLP_target_id
* mP_threat_id
* and other VLP_* parameters.
*/
ok_to_query = 1;

1
1 /* end if error==0 */

) /* end case: stmt. */
break;

default:
cprint(CH_ERR,"%s: passed unknown VL methodology (%d)\n"
,whoami,itype);

break:
1

/*
* What this final code segment does:
*
* At this point the parameters have been added to the
* the VLParam layer (see VLParam(3) manual page
* If no errors occurred, then we are ready to
* look for a meta record that matches the tgt, threat.
* AM) vulnerability method (namely ‘BINARY").
* Once we have that record, we can retrieve a the
* data source (URL) and the vulnerability calculation
* function.
* Finally we call that function and return its results.
*/
if (ok_to_query == 1)
{ MetaTable_t mquery;
MetaTable_t *mrec;
extern MetaTable_t *MetaTable_get_rec();
float *f, *(*funcptr) (void *);
VL_Meth *mptr;

/* zero meta Table data structure */
memset((void*)&mquery, (int) 0, sizeof(MetaTable_t) 1;

mquery.tgt = (dbEntityType*) &VLP_target_type;
mquery.threat = (dbEntityType*) &VLP_threat_type;
mptr = vl_meth_get_FromID(itype);
if (mptr==NDLL) {

23

cprint(CH_ERR, “%s: internal error\n",whoami);
break:

1
mquery.vl_meth= mptr->name;

r@rec=MetaTable_get_rec(mquery.tgt,mquexy.threat,itype);
if (mrec==NULL) (

/* if mrec == NULL then no record found */
_rpt_error(RE_NO_META_REC ,whoami);
++error;

) else {
funcptr = db_tbl_result_fu.nc(mrec);
if (funcptr != NULL) {
f = funcptr(db_tbl_retrieve(mrec));
if (f==NULL) {

/* error reading tbl result */
_rpt_error(RE_VLSOURCE_INTERP ,whoami);
++error ;

1
ret = f;

1 /* endif (funcptr != NULL) */
} /* end if (mrec == WL) else */

] /* end if (ok-to-query == 1)

va_end(ap) ;

return ret;
1

Figure 5. Adding an API for a New Vulnerabilitv Method vl binary ArlDIS_ProbAll NoNetO.

that additional parameters needed to execute a collision damage assessment have been added to
the VLParam layer (such as the masses of the colliding entities, etc.).

If no errors occurred in setting the VLParam parameters, then the vulnerability
assessment may proceed (on lines 178 through 215).

Meanwhile, we note that the case for “munition” type damage is handled between
lines 76 and 161. The first thing we note about this section of code is that it is much longer than
the “collision” damage section; yet, it does essentially the same thing (initializes the VLParam
layer’s variables). The difference is that this code section performs robust and proper error
checking throughout. Errors are recorded to rpt_error APIs (see rpt_error on the cprint(3)

manual page in Appendix B). Rpt_error APIs store important information about what went ,

wrong when errors occur; this information may be extracted by other routines. (This is usefiJ
because the application-calling server routines may be removed by several layers from the APIs
where the error occurred. By the time the program returns to the application level, the nature of
the error may be lost.) A second thing this section of code adds is that it tests for exception
conditions. In this example,‘test for a direct hit against the queried target. If we determine that
the munition requires a direct impact on the target to initiate any significant damage but we

24

“missed” the target, then a special exception value is returned (on line 126). This is the value we

defined on line 9.

We now return our attention to lines 178 through 215. At this point, the parameters
have been added to the VLParam layer. If no errors or exceptions occurred, then we are ready to
look for a meta record that matches the target, threat, and vulnerability method used. Lines 189

through 196 gather the threat, target, and V/L method identifier. Notice that the target and the
type of threat that is threatening it are extracted from the VLParam layer on lines 189 and 190.
The variables shown here are members of the VLParam layer (VLP_target_type and
VLP_threat_type). The external form of the vulnerability method is required to retrieve the

meta data record. (Remember that we defined external representations for these types on lines

120 through 140 in Figure 3.) On line 196 of Figure 5, the external American standard code for
information exchange (ASCII) identifier of this vulnerability method is used to fill the V/L
method field of the meta record being queried. These data items are added to a blank meta data

structure. We then search for the meta record that matches these parameters on line 198. (Recall
that we explained how and where vulnerability meta data records were read in Section 5.1 and in
Appendix B, vls_db_init(5).) Once we have that meta data record, we may retrieve the location
of the appropriate lethality data (in uniform resource locator [URL] format) and the function that
calculates the system’s vulnerability. On line 204, we obtain a pointer to that function from the

datamanagerAP1 db_tbl_result_func(). This referenced function operates on a data set to

return the lethality calculation for a set of initial conditions that are provided by the VLParam

sub-layer. We call this function the lethality “data look-up function” because it often is just
parsing a look-up table. However, it may actually do the lethality calculation itself or initiate

other processes that do the calculation. How it gets the results is not a matter of concern as long

as it returns the results appropriate to the vulnerability method in use (the “BINARY” method in
our sample case). The API db_tbl_retrieve () that we see used on line 206 returns that data
set to be operated upon by the “data look-up function”. Normally, db_tbl_retrieve() returns

a table of vulnerability results that are then used as the look-up table for our table look-up
function. However, db_tbl_retrieve () need not return a look-up table; it could return a URL,
a password, or any data structure or value. As with the data look-up function, it does not
matter, as long as whatever it returns will be usable by the table look-up function to return the
correct results for the present vulnerability calculation. The APIs, db_tbl_result_func () and
db_tbl_retrieve (1, are documented in the db(3) manual page of Appendix B. How and where

the data look-up functions are placed into the server is the subject of Section 7.2.

25

Finally, on line 206, we call our data look-up function and return its results (on line
2 19) to complete the vulnerability calculation.

7.2 Adding a New (look-up) Table Format

Every lethality data set type is required to have a data reader (also called data look-up
function) and a data loader function. The loader function initializes the lethality data set. This
may simply involve reading a static table into memory or may involve slightly more complicated
initialization procedures such as opening network connections, etc. There is really no limit as to

what the loader function does. (However, the data loader functions provided with this initial

release of the DIS lethality server only read and load static “look-up” tables into memory.) The

second required function, the data reader (or look-up) function, has the responsibility for

accessing the initialized data set. It then returns results that are appropriate for the associated V/L

method. How these two functions are incorporated into the server is explained in this section.

Both the data reader and the data loader functions must be defined and compiled into the
server before “run time”. The following steps outline the procedure for doing this:

1.

2.

3.

4.

Add an internal identifier to the list of enumerations that identify new data sources.

Write prototypes for the two functions and add them to a static table.

Add the source code for your prototyped functions.

Recompile the server.

These four steps are now covered in detail in the next four sections.

7.2.1 Adding Internal 1dentiJier.s for New Types of Vulnerability Data (or formats)

Unique internal identifiers are required for each new type of vulnerability data. A

vulnerability data type may be considered “new” not only if it is new, but also if it is a previously
defined vulnerability data type that is packaged in a different manner. For instance, a look-up table

of IUA3 data could be for a high explosive antitank (HEAT) munition threat, or it could be for a
kinetic energy (ICE) munition. Both data sets represent the same type of data (MFK), but both

have tabular formats that differ (IUA HEAT format versus IUA KE). Hence, each needs its own
data reader function (and internal identifier). The file $VLS_HOME/src/db/tbl_fmts.h contains

31UA (individual unit action). This type of data represents loss of combat capability for a given threat. The
tabulated data are formatted in columns and rows according to target range, aspect angle of attack, and kill level
(MFK).

26

.

references to all the known data formats. Figure 6 displays this file. On lines 14 and 15 of Figure 6,

we can see where internal enumerations for IUA data types are provided (for both HEAT and KE
formats).

By way of example, we shall add a new format for the “collision” damage we defined on
line 136 of vl_meth.h in Figure 3. On line 18 of Figure 6, we define PKS_BINARY_COLLISION to

represent our new data type. This enumeration internally represents a data file format (or
function, network protocol, etc.). Data look-up (also called reader) functions will be written,
which will return data that are commensurate with whatever we expect to be returned by this
newly defined data type. That data type is associated with our “BINARY” V/L methodology.

This may sound rather enigmatic, but the fact is that the data source may be anything (not just a
static data file of a particular format). It could be a database, a network connection, a “spawned”
program, or just about anything. Our data reader (and initializer) functions (which we will write
later) are the sole entities that need to know these particulars. What is important is that the V/L
API, which indirectly calls the data reader function, receives what it expects to receive from the
data reader. The important point is that the data reader function and the V/L API that calls it
agree about what shall be returned and how it is properly used. In this particular example, it will
expect to receive an array of probabilities from the “BINARY” vulnerability set. (This is what

we assumed when we wrote the API function ‘cvl_binary_ArlDIS_ProbAll_NoNet (I” shown
in Figure 5.) On line 206 of this function (Figure 5), the data reader returns its set of data, the
results of the vulnerability analysis. This returned value (which is really of type “void *“) is cast
to a pointer to a floating point array (“float *“). Hence, the data reader is expected to return a
pointer to a floating point array that contains the probability of a kill and the probability of not
being killed (in accordance with the BINARY vulnerability methodology we established). The
point is that the V/L API function had better understand quite clearly what type of data set is
going to be returned for a given vulnerability methodology (BINARY method for collision damage
in this case). As we continue to examine the file $VLS_HOME/src/db/tbl_fints.h in Figure 6, we

shall see how this association is established.

7.2.2. Adding New “Table Lookup ” Function Prototypes

On lines 130 through 134, we added a new element to the LookUp_Tbls [I array. This is the
point where the association is made between the data reader function and the data type identifier.
On line 130, the internal enumeration we created on line 18 is used to identify the new type of
vulnerability we are referencing. Following this, the ASCII string “PKS_BINARY_COLLISION”
is used for the “name” field. This is an important field because it becomes the external
representation of our new data type (and data source format). This name must appear in the

27

#ifndef _TBL_FNTS
#define _TBL_mS

#include cstdio.h> /* ANSI C header files */
/* local header files */
#include <tbl_rdrs.h> /* prototypes of your table reader(s) go here */
#include "vl_meth.h"

enum _TblF'mt_Enum {
_TBLFNT_ERROR = 0 /* err==O, see tbl_fmt_is_valid_typeO */
,_START_OF_TblEmt_Enum

,IUA_HE
,IUA_HEAT
,IUA_KE
,IUA_STAFF

,PKS_BINARY_COLLISION

,_END_OF_TblFmt_Enum
1;
typedef enum _TblRmt_Enum TblFmt_Enum ;

/*
* TblFmt_Enum identifies the table (or data) format.
*
*/

typedef struct TblF'mt2ResultType_struct {
TblFmt_Enum fmt; /* format of data source */
VT.,_Result returned-type; /* the type of result returned

* by the reader function
*/

) TblFmtZResult_t;
/*
* TblFmt2Result[] will have one entry for every
* known table format (that is one for every
* TblEmt_Enum).
*/

typedef struct _TblF'mt_t 1
TblFmt_Enum type; /* enumeration for your table format

* - This identifies the format of the
* data in the table.
*/

char *name; /* a single word name for your table format */
char *description; /* a short description of it */
void *(*reader_func)(FILE *); /* reader function takes on FILE* arg */
void *(*result_func) (void *);/* VL reporting function */

/* result_func() takes argument pointer
* to the look-up table structure loaded
* into memory.
*/

/*
*
*
*
*
*
*
*

returns vl data which describes
the result of the lethality event.

The format of the data
returning function.
However, it must agree
output format which is
the "name" field.

is up to the

with the
implied by

.

28

* For instance if
* name = "IUAJJEAT"
* then result_func will return
* a floating-point array of 5 numbers.
* (Its returned value should therefore
* be cast as (float *) 1.
*/

} TbWlnt_t;

ifndef _DB_C
extem TblFmt2Result_t TblFmt2Result[];
extem TblFmt_t Lookup_Tbls[l;

else
static TblFmtZResult_t TblFmt2Result[] =
1

1 IUA_'=, _PS_MFK_LOWER_BOUND } /* returns MFK data */
,{ IUA_HSAT, _PS_MFI_LOwER_BOUX'D } /* returns MFK data */
, i IUA_m, _PS_MFI_LOWER_BOUND 1 /* returns MFK data */
,{IUA_STAFF, _PS_MFK_LOWER_BOUND 1 /* returns MFK data */

,{PKS_BIN~Y_COLLISION,_PS_BINARY_LOWER_D}/*returns BINARY gk data */

I;
static TblFmt_t LookUp_Tbls[_END_OF_TblFmt_Enum+ll = {

{ _TBLFM!I_ERROR , "-error" "Not a known table format" , NULL , NULL 1
,{_START_OF_TblFmt_Enum, NULL: NULL ,NuLL,NuLLl

,*___---___________________----_-----------____ _-_----__---____---_______*/

/* CONOT ADD ABOVE THIS LINE */
/*+struct format is~____________________--------------_--~~~--~~~~~~~-----~~/
/*I enum name descript reader_func result_funcl*/

/*
* If you get a "tblfmt_WHATEVER_NAME" undeclared here.
* then you may have not added its prototype to the header file:
* #include <tbl_rdrs.h>
*/

, (IUA_HE, "IUA_HE", "(IUA) High Explosive (BE)"
,tblfmt_iua_heat_rd
,tblfmt_iua_heat_result

1

, (IUA_HEAT, "IUAJIEAT", "(IUA) High Explosive Anti-Tank (HEAT)'
,tblfmt_iua_heat_rd
,tblfmt_iua_heat_result

1

,{IUA_KE,"IUA_?CE", "(IUA) Kinetic Energy (KE)"
,tblfmt_iua_ke_rd
,tblfmt_iua_ke_result

1
/*
* top attack ("Staff munition"):
*/
,(IUA_STAFF,"IUA_STAFF"

,’ (IUA) STAFF Explosively Formed Penatrator (EFP)'
,tblfmt_iua_staff_rd
,tblfmt_iua_staff_result

1

29

,{ PKS_BINARY_COLLISION, "PKS_BINARY_COLLISION"
,"(P-K) For Collisions returns BINARY V/L Methodology"
I tblfmt_binary_collision_rd

1'
tblfmt_binary_collision_result

/*____-_---__---___------_---___--_-----___--_______---___________~-__~--*/
/* Do NOT ADD BELOW THIS LINE */
/*___--_---_----_-_----____---__-___----___--_-__________________________*/

, {_END_OF_TblFmt_Enum, NULL, Nuu, NULL, NL&L 1

1;
endif /* ifndef TBL_FMTS_C */

VL_Result dk_tbl_fmt_result_type(char *fmtnan-te); /* data type returned by lookup*/

#endif /* ifndef _TBL_E'MTS */

Figure 6. “tbl f&h” Used for Data V/L Data Reading and Initialization.- -

external meta records that reference collision damage data returned in a format consistent with the
BINARY vulnerability methodology. Line 13 1 describes the vulnerability data type and format in
human terms and has no logical programming value (but is used in print statements). Lines 132 and
133 are the names of the vulnerability data initialization and reader functions, respectively.4

When a meta data record is read, the data format’s external representation appears in the
“format” field of the record (“PKS_BINARY_COLLISION” in the case of the collision damage
described in terms of our BINARY methodology). For example, the meta data records shown in the
vls_db_init(5) manual are repeated in Figure 7. On the last line of Figure 7, we see that

“IUA-HEAT” is in the “format” field. This tells the server to use the record shown on lines 112
through 115 (of Figure 6) to determine which data initialization and data reader function to use.
When the data initialization function is called, the last field of the meta data record is passed to it as
an argument. The last line of Figure 7 shows that “file : /Data/Tables/ IUA/smplHEAT. iua” k

the argument that is passed to the initializing function under the conditions set forth by the record’s
target, threat, and vulnerability method as dictated on that line.5 The initializer function must return

a pointer. Later, when a lethality query is made, that same pointer will be available for use by the

look-up (or reader) function. The lethality server maintains this pointer and provides it when

4(This naming convention might be confusing since “tblfmt_binary_collision_rd" is not the reader function but
the initializer function. (The “_ rd” convention originated because, thus far, the server has only been used for static
look-up tables; hence, the duty of the initialization function was to read [ergo, “_rd”] the static data into memory.)
The duty of the second function (our current “reader” function) was to parse the static table (now in memory) and
return the correct vulnerability results (ergo, the “ result” convention).
5Namely, the conditions are when a “T-SO” tank % attacked by an “AT-5 Spandrel missile” and evaluated using
the “DIS HitToKill” vulnerability methodology.

30

.

.

needed by the reader (or table look-up) function (i.e., when a vulnerability analysis query is made
for the very same target, threat, and vulnerability method). This pointer could point to anything as
long as the data reader (or table look-up) function is able to use the data set (referenced by the

pointer) in such a way as to allow the function to return the correct lethality results (for the given
vulnerability initial conditions6).

#
#
DIS enumerations are IEEE 1278.1-1995 Standard.
Note that the file URL location is taken relative
to the $VLS_HOME directory.
#--next line's tgt and threat are: Soviet 125rrm KE Threat VS. a T-80 target.
1 1 222 1 1 1, 2 2 222 2 11,"DIS HitToKill","IUA_KE", "file:/Data/Tables/IUA/smplKE.iua"
#--next line's tgt and threat are: Soviet 12Omm HEAT-FS VS. a T-80 tgt.
1 1 222 1 1 1, 2 2 222 2 18,"DIS HitToKill","IUA_HEAT", nfile:/Data/Tables/IUA/sniplHEAT.iua"
#--next line's tgt and threat are: AT-5 Spandrel missile VS. a T-80 tgt.
1 I. 222 1 1 1, 2 2 222 1 7, "DIS HitToKill","IUA_HEAT", "file:/Data/Tables/IUA/smplHEAT.iua"

Figure 7. Exam&e of Records for a Meta Data File.

As mentioned, the lethality server architecture is designed to allow these functions to return

any type of data. Thus far, however, they have only been used to initialize (and look up the
results) of static look-up tables. This has been implemented by having the initialization tile look

for (and read) the data file referenced in the meta data record (the URL address in the last field of a
meta data record). The last line of Figure 7 shows “file : /Data/Tables / IUA/smplHEAT. iua" as
this data file for that meta data record. The initialization function loads this static data table into a
data structure and returns a pointer to the memory location of that data structure. The result (or

table look-up) function knows how to parse this data structure. When the result function is called,

it receives a pointer to this data structure and proceeds to parse it and returns the correct results.
Figure 8 displays our two new initializer and reader functions added (in bold text).

6Recall that those initial conditions are provided by the VLParam sub-layer.

31

/* $Id: tbl_rdrs.h,v 0.4 1998/03/23 04:20:48 geoffs Exp geoffs $ */

extem void *tblfmt_iua_ke_rd(FILE
extem void *tblfmt_iua_ke_result(

extem void *tblfmt_iua_he_rd(FILE

*in_fp);
void *);

* fp);
extem void *tblfmt_iua_he_result(void *);

extem void *tblfmt_iua_heat_rd(FILE * fp);
extem void *tblfmt_iua_heat_result(void *I;

extem void *tblfmt_iua_staff_rd(FILE *fp);
extem void *tblfmt_iua_staff_result(void *);

extern void *tblfmt_binary_collision_rd(FILE *fg);
extern void *tblfmt_binary_collision_result(void *);

Figure 8. Prototvnes of Data Source Initialization and Reader Functions (in “tbl_rdrs.h”I.

-

7.2.3. Adding Source Code for New “Table Look-up ” Function

The source code for these two functions is not included in this text since details of how

they are implemented are not important (as long as the initialization function initializes the data

set in some manner and the result function is able to use that initialized data set to return the

correct lethality result). However, it is recommended that the source code for data initialization

and reader functions be placed in the directory $VLS_HOME/src/TblReaders and incorporated

into the directory’s “makefile”. It is required that the prototype for the reader and initialization

file be placed in the header file $VLS_HOME/src/TblReaders/tbl_rdrs.h (shown in Figure 8).

This is mandatory since “tbl_fmts.h” (Figure 6) requires the prototyped function names before

they may be included into the Lookup_Tbls [I array (Figure 6, lines 94 through 142). The

“tbl_rdrs.h” file is shown in Figure 8 with our two new initializer and reader functions added (in

bold text).

7.2.4. The Final Step in Adding New Table Look-up Functions (recompiling the server)

In order for these changes to take place, the server must be recompiled. This may be

accomplished by executing the “compile.&” shell script outlined in Section 3.2. (This assumes

that the “makefile” in the $VLS_HOME/src/TblReaders directory has been modified to

incorporate the two new functions.) Following a successful recompilation, the server will be

equipped to handle V/L API queries for the newly added vulnerability methodology and data

source format.

Note, however, that in order to make such queries, an application program must be linked

directly with the server V/L library (i.e., a direct function call must be made to the server API

32

.

,

functions). We still have not provided a method for a remote client application to make queries

(for the newly created vulnerability methodology). To see how this is done, we examine our final
code modification section, Section 7.3.

7.3 Addine Remote Access for a New Vulnerabilitv Methodoloav

In Figure 1, it is seen that the DIS Monitor is an application that directly calls functions in

the m API layer (vl_binary_ArlDIS_ProbAll_NoNet () that we defined in Figure 5 would be
one such function). This section shows how a remote client (the client of Figure 1) is able to

have indirect access to the results from the same API. The steps are as follow:

1. Have the DIS Monitor monitor the virtual environment for important parameters.

2. Select a protocol syntax between the client and DIS Server.

3. Enable the DIS monitor to call the newly created VL APIs (to respond to client queries).

We cover these three steps in the next three sections.

7.3.1 Expanding the Environmental Monitoring Capability of the DIS Monitor

Because the server currently implements just the “MFK” vulnerability methodology for

munition type damage, the DIS monitor only monitors parameters required by that set of APIs.
(This means that the DIS monitor monitors entity state, fire, and detonation PDUs because these
are the only PDUs required by the V/L APIs to complete the “MFK” analysis for munition
damage.) However, in Sections 7.1 and 7.2, we have provided for a new vulnerability
methodology (BINARY) as a result of collision damage. APIs for this new methodology will

require an additional argument (the collision PDU). (Note that on line 71 of Figure 5 the collision

PDU is required to set the initial condition parameters for collision damage.)

The DIS monitor (see dis_mon(l) in Appendix B) watches DIS PDU traffic and maintains
records of PDUs that are of interest to it. The PDUs it finds interesting are those that are needed

for providing initial conditions for a vulnerability assessment. For instance, the API ,

“vl_m&DIS_ProbAll()” needs four PDUs: the entity state PDU for the target, entity state for

the firer, the fire PDU, and detonation PDU (see vl(3) in Appendix B). The DIS monitor then
listens to PDU traffic, and whenever someone fires (via a fire PDU) or a munition detonates (via
the detonation PDU), it keeps a copy of that PDU, along with an entity state PDU of whoever
did the firing and whoever was targeted at the time (if known). The DIS monitor is then able to

call the API “vl_mfkDIS_ProbAll()” and provide all the required parameters. It would then

33

generate results for the DIS server module via shared memory (see Figure 1 and vlserver(1) in
Appendix B). This same procedure should be followed for newly added APIs (such as the APIs
for our collision damage/BINARY methodology). We must modify the DIS monitor to monitor
the DIS network traffic (PDUs). It will have to keep records of parameters that could be used in
a query. It will then be ready to call V/L APIs when required.

Source code for the DIS monitor is given in the $VLS_HOME/src/DisMonl directory. The
appropriate place to start modifying dis_mon(l) to listen for new parameters is in the file
“processqduc”, specifically in the function process_pdu_do () which is reproduced in Figure 9.

The portion of the code in bold has been added in order to keep records of collision PDUs.

The source code for the function process_pdu_coll () that is called on line 60 is left as an

exercise for the student. All that process_pdu_coll () has to do is store the collision PDU in a

data structure so that it can be retrieved for later use.

Unfortunately, this section of code will never be activated! This is because the DIS
manager (see dis_mgr(l) in Appendix B) is excluding all PDUs except those that we have stated
an interest in receiving (and we have not yet told the dis_mgr that we are interested in receiving
collision PDUs). To start receiving collision PDUs, we modify the DIS monitor function
“connect_to_dis_mgr()” (shown in Figure 10).

This section of the DIS monitor references the DIS manager library calls “dis_open()” and

“dis_registerqdu().” The latter call is where we need to add a provision for the collision PDUs
that we want to start monitoring. Lines 20 and 24 of Figure 10 show where we have provided for

collision PDUs (shown in bold text), Now when dis_register_pdu () is called on line 27, all
the PDU types seen (on lines 21 through 24) will be added to the list of PDU types that we are
registering with the DIS manager (i.e., the list of PDUs we want “see”; all other PDUs will be
excluded).

The DIS monitor is now able to monitor the virtual environment for parameters that are
important to initializing a collision damage analysis. It is also maintaining a record of those
parameters for later use in vulnerability calculations. We now turn our attention to how remote

clients may access a new damage type by querying the server.

.

34

.

- process_pdu_doO
*
* int process_pdu_do(int in&, PDU_Type type, char * pdu)
*
* handle a pdu (based on which type of pdu it is that we are
* handling)
*
* return TRUE if the pdu is to be freed (discarded).
x else return FALSE (if the pdu is being held somewhere).
*
*/
int processgdu_do(int indx, PDU_Type
{ char tmp[2561;

int free_this_pdu;
static char *whoami="processqdu_do(
extern char *Dis_Pdu_Names[l;

free_thisqdu = TRUE;

switch (type) {
case DL_NO_DATA:

/* buffer empty */
break;

case ?SntityStatePDU_Type:
/*

type, char * pdu)

I,1 ;

* since we have already handle ES in processqdu0
* there is nothing to do now.
*/
free_this_pdu = process_pdu_es((EntityStatePDU *I pdu 1;.
break:
case FirePDU_Type:

/*
* allocate a location in the fire/detonation event list
* (this list will contain the most recent
* EntityState PDUs for the firer,
* Target (if one) and for the detonation.
* These PDUs will remain stored and will not be
* freed.
*/
free_this_pdu = process_pdu_fir((FirePDU *I pdu);

break;
case DetonationPDU_Type:

/*
* add the detonation pdu into the fire/detonation event
* list.
*/
free_thissdu = process_pdu_det((DetonationPDU *) pdu
break;

);

case CollisionPDU_Tyge:
/*
* We saw a Collision PDU. Keep it some where
* for later use as an argument to a VL API call.
t
* process_pdu_collO: is a function that would store all
l

*

*/

process_pdu_coll(

free_thisgdu =

collision pdu's in some data structure
for later retrieval.

(CollisionPDU *) pdu 1;

FALSE; /* false since we need to keep a
* copy of this pdu

3.5

break;

default:
free_thisqdu = TRUE;

sprintfttmp
,"%s:saw a pdu_type %d (%s)

,whoami
type

,Dis_~du_Names tty-pel
1;

fputs(tip, stderr);
break;

I

return free_thisqdu;
3

*/

do not know how to handle it.\n"

Figure 9. Modifications of DIS Monitor to Listen for New PDU Tvnes.

/*
- connect_to_dis_mgrO
*
* Establish a connection with the server on the specified machine.
*/
int connect_to_dis_mgr(char *host)
{char pdu_list[2561;

printf("Connecting to DIS manager on %s...\n",host);fflush(stdout);
/*

* open a connection to the dis_mgr server on machine host.
*/
if (dis_open(host) == FALSE) 1

return(/* cornection failure! exit */
> else {

printf("Successful! \n");
/*

* Register interest in PDUs.
*/

sprintf(pdu_list," %d %d %d %d "
,EntityStatePDU_Type
,FirePDU_Type
,DetonationPDU_Type

,CollisionPDU_Type
);

printf("Sending : %s\n",pdu_list);
dis_register_pdu(pdu_list);
return(O);

I
1

Figure 10. Removina Collision From DIS Manager’s PDU “Filterin&‘.

7.3.2 Establishing a Protocol Between the Client and DIS Server

Figure 1 displays remote client applications communicating with the DIS server. The

vlserver(1) manual page in Appendix B explains the syntax for “Ml%” queries. We will now

add the capability to make “BINARY” queries for collision damage. In the syntax of client-

36

.

server protocol established in the vlsewer(1) manual page, we shall add new “QUERY” types.

Each query type will correspond to one of the new V/L APIs we listed in Table 4 (presumably,
we have already written all these APIs and added them to the V/L library). Figure 11 displays

“vls_toke.h” where we add new key words for the client-server simple query language. This file

and other vlserver source files are located in the $VLS_HOME/src/Server directory.

Changes made in vls_toke.h are shown in bold print. We added tokens to the _VLS_Token
enumeration type for internal use, and corresponding ASCII strings to the VLS_TokenString array
for parsing an external query. Clients send query tokens in the form of an ASCII string; these strings
are then “tokenized” (the ASCII key words are converted to an internal numerical “token”
representation) by a simple parser in the vls_toke.h file. Here, we added new query types (on lines

32 through 35 and 84 through 87 of Figure 11) to tell the server we wish to query for collision
damage and receive the answer in a BINARY vulnerability format. On lines 49 and 102, we are
accommodating arguments needed to complete this query. Specifically, when a query for collision
damage is made, the querying client shall reference a number that identifies which collision event is to
be evaluated. (DIS provides a unique identifier for each collision event on the virtual battlefield.) We
next modify the behavior of the DIS server (vlserver) to respond to the tokens we just defined. To

do this, we add to the function service_query_to_db() in the source code file
$VLS_HOME/ /Ssrc erver/vlserver.c as shown in bold text in Figure 12.

The bold print text in Figure 12 was added to service_query_to_db (I to allow the server
to understand and service the collision damage query. The query would be formatted by the
client in a manner similar to the ASCII string that is shown in Figure 13. (See the vlserver(1) in
Appendix B for how to format queries.)

The code segment shown in Figure 12 begins processing this query just after reading the key
word “QUERY”. On lines 50 and 79, vls_tokenize () transforms the type of query

(L‘TYPE_bharyCOLLISION_ProbAll") andtheargumentsidentifier ~‘ARGS_DIS_COLLISION_IDS")
into their equivalent tokens. On line 97, the tokenized argument identifier is used to drive a switch
statement. Since the tokenized value is equal to the enumeration T_ARGS_DIS_COLLISION_IDS, the
section of code from lines 148 through 192 is executed. There we see that six integers are scanned.
The first three represent the IDS of the target (or subject of our vulnerability analysis); the second
three integers (“4 5 6” in Figure 13) are the unique collision event ID. On lines 179 through 18 1,

these arguments and the token that identifies the type of query being made are placed in the shared
memory link between the DIS server (vlserver) and the DIS monitor (dis_mon). (The manual page

37

/* $Id: vls_toke.h,v 0.20 1998/08/09 21:ll:lO geoffs Exp geoffs $ */
#ifndef _TOKENS_H_
#define _TOKE?JS_H_
/*----__----__________--______start tiny vlsfokenizer----------------*/
enum _VLS_Token 1

T-ERROR
,_T_START_OF_TOKZNS

,T_VLS_ECHO
r ‘LmP /* ask for help */
,T_HELPl
,T_INFO_SERVER /* get admin info */

,T_VLS_QUERY_SHKSM_ID /* ask for shared memory ID */
,T_VLS_QUERY_PARSER_VER
,T_VLS_QUERY_PARSER_VERSION
,T_VLS_QUERY_DIS_VERSION

,T_vLS_QUERY_TYPE /* expect the type of query
* to follow this vlsfoken
*/

T START_OF_T_QTYPE_TOKENSI - -

,T_QTYPE_mfkDIS_Result /* Requested Format of Answer */
,T_QTYPE_mfkDIS_ProbAll
,T_QTYPE_mfkDIS_ProbK
,T_QrrPE_mfkDIS_ProbNF
,T_QTYPE_mfkDIS_ProbF
,T_QTYPE_mfkDIS_Prob
,T_QTYPE_mfkDIS_ProbNoDamage

,T_QTYPE_binaryCOLLISION_Result / *BINARY vulnerability method*/

,T_QTYPE_binaryCOLLISION_ProbAll /*for damage from collision*/

, T_QTYPE_binaryCOLLISION_ProbALIVE
I T_QTYPE_binaryCOLLISION_ProbDEAD .

T END_OF_T_QTYPE_TOKENSI - -

,_T_START_OF_T_QARGS_TOKENS

,T_VLS_QUERY_TYPE_MFK_BINARY_PDUS /* expect binary pdu args */
,T_VLS_QUERY_TYPE_KFK_DIS_IDS /* expect ID args - implies

* we have to get the
* applicable pdus elsewhere
* (such as from shared
* memory)
*/

,T_ARGS_DIS_COLLISION_IDS

T END_OF_T_QARGS_TOFENSI - -

,_T_EN_OF_TOKENS
I;

typedef enum _VLS_Token VU-Token;

static char *VLS_TokenString[] = 1
"<*ERROR NOT A vls_token*>"
,WL

,"ECHO"
, "HELP"

/* expect some ID args */

38

II -y I,
, .

, "INFO_SEXVER"
, ” ShWID"
, ‘vm”
,"VERSION"
,"DIS_VERSION"

, "QUERY "

II _ T START OF T QTYPE TOKENS"/* start of query types-Not a vls_token
*/ ’

,"TYPE_mfkDIS_Result"
, "TYPE_mfWIS_ProbAll"
,"TYPE_mfkDIS_ProbK"
,"TYPE_mfkDIS_ProbMF"
,"TYPE_mfkDIS_ProbF"
,"TYPE_mfkDIS_ProbM"
,"TYPE_mfkDIS_ProbNoDamage"

I "TYPE_binaryCOLLISION_Resultm /*BINARY vulnerability method */
I nTYPE_binaryCOLLISION_ProbAlllB /*for damage from collision*/
"TYPE_binaryCOLLISION_ProbALIVE~

:"TYPE binaryCOLLISION_ProbDEAD"-

II, _T END OF T QTYPE TOKENS"/* end of query types-Not a vls_token */

, _T START OF T QARGS TOKENS" /*start of argument types */II

,"ARGS_mfkDIS_PDUS" /* expect binary pdu args */
,"ARGS_mfkDIS_IDS" /* expect ID args - implies

* we have to get the
* applicable pdus elsewhere
* (such as from shared
* memory) - not implemented.
* Tue Ott 14 15:02:14 EDT 1997
*/

,"ARGS_DIS_COLLISION_IDS" /* expect some ID args */

,"_T END OF T QARGS TOKENS" /*end of arg types - not a vlsfoken */

,NuLL
1; /* the rest of vls_toke.h not shown...*/

Figure 11. Defining Client-Server Protocol (adding tokens to vls_t0ke.h).

mk_shm(3) in Appendix B describes the shared memory link between these two applications.) On
line 182, a flag is set to inform the DIS monitor (dis_mon(l)) that the vlserver has placed a query in
the shared memory link (and the vlserver is waiting for the answer to be returned). Vlserver then
enters a loop (between lines 216 and 227) waiting for dis_mon to return the result of the vulnerability
analysis. If an answer was successfully returned by dis_mon, then on line 278 vlserver passes that
answer to the client who requested it in the first place. There is only one problem with all of this.

The DIS monitor does not yet know how to respond to this query type from the DIS server. In the
next section, we explain how dis_mon is modified to accomplish this task.

39

/*
- service_query_to_dbO
*
* static void service_query_to_db(pc,query_id,rest_of_query)
*
* Service a QUERY type command from the client:
*
* 1. Grab rest of query command arguments.
* 2. Place query and arguments into shared memory and set
* shared memory flag to let DisMonitor bow
* that there is a query pending to be answered by the DisMonitor.
* 3. Wait for DisMonitor to answer the query or be timed out.
* 4. Return results to client.
*

*/
void service_query_to_db(pc,query_id,rest_of_query)
struct pkg_conn *PC;
int query-id;
char *rest-of-query;
(int error, ch;

register char *ptr, *cot;
VLS_Token t, toke_query_type, toke_args_type;

char *str_query_type, *str_args_type, *str_args_type_eot;
/* str_query_Wpe str_args_type str_args_type_eot
* are used for making user-friendly error messages.
*/
int query-placed, int_args_matched;
char error_msg_buff[10241;
char buf[1024];

error = 1;
query-placed = FALSE;
int_args_matched = FALSE;

if (pc!=NULI. && rest-of-query != NULL) 1

ptr =

/*
* get
*/
ptr =
eot =

rest-of-query;

next vlsfoken of command. - query type.

sscan_skip_white(ptr) ;I* skip white space characters */
sscan_next_white(ptr);

if (cot != NULL) 1
ch = *cot;
*eot='\O';

1

toke_query_type = vls_tokenize(ptr);

if

I

/*
*

(FALSE == vls_token_is_query_type(toke_query_type 1) {
++error;
str_query_type=ptr;
sprintf(error_msg_buff,"sytax error. unknown query type seen :%3Os ’

,str_query_type);
got0 out; /* sytax error */

restore rest-of-query for scaning
*/
if (ch != 0) I

40

.

.

.

*eot = ch;
3
ptr = eot;

/*
* get next vls_token of command. - args type.
*/
ptr = sscan_skip_white(ptr);

str_args_type = ptr;
eot = sscan_next_white(ptr);

str_args_type_eot = eot;
if (cot != NULL) 1

ch = *cot;
*eot='\O';

toke_args_type = vls_tokenize(Ptr);

if (FALSE == vls_token_is_arg_type(toke_args_type)) {
++error;

sprintf(error_msg_buff
,l'snytax error. unbown argument(s) identifier seen: %3Os"
str_args_type 1;

got0 out; /* sytax error */
1

/*
* restore rest-of-query for scaning
*/
if (ch != 0) {

*eot = ch;
1
ptr = eot;

switch (toke_args_type) {
int tgt_id[3],event_id[31, collision_id[31;

case T_VLS_QUERY_TYPE_MFK_DIS_IDS:
/* scan Tgt and Event ID (2 sets of (3 ints))*/
if (Verbose)
printf (u***sca.nner sees Tgt and Event: %s\n",ptr);

if (6 != sscanf(ptr," %d %d %d %d %d %d ",
&tgt_id[Ol, &tgt_id[ll, &tgt_id[21,
&event_id[O], &event_id[ll, &event_id[21

I

1 c
int_args_matched = FALSE;
++error;

ch = *str_args_type_eot;
*str_args_type_eot='\O';

sprintf(error_msg_buff
I "sytax error. expected 6 integers to follow \ “%s\“”

,str_args_type
1;

*str_args_type_eot=ch;

break; /* syntax error expected 6 ints */
1 else 1
/* set shared memory */
int_args_matched = TRUE;
if (Verbose) I
printf("***puting to shm Tgt:%d %d %d ",

41

tgt_id[Ol, tgt_id[ll, tgt_id[Zl);
printf("***puting to shm Rvent:%d %d %d ',

event_id[Ol, event_id[ll,event_id[21);
1

(void) shmSet_TargetID(tgt_id 1;
(void) shmSet_EventID(event-id 1;
(void) shmSet_QueryArgsTy-pe(toke_args_type 1;
(void) shmSet_QueqType(toke_query_Wpe);
(void) shmClear_QueryAnsweredO;
if (1 == shmSet_QueryPlacedO) I

queryalaced = TRUE;
1 else 1

++error;
share memory! ");
*/

.

.

/* e xpec t some ID arqs */

sprintf(error_msg_buff,"could not set
; /* error could not set share memory

1
3
break;

case T_ARGS_DIS_COLLISION_IDS:
/*
l We just saw "ARGS_DIS_COLLISION_IDS" in the query statement.
* Following this we expect to see three integers
* that together are the collision event ID
*/

if (6 != sscanf(ptr," %a %a %a %a %a %a I,
&tqt_iaCol, &tqt_id t 13 , &tqt_iat21,
hcollision_id[Ol, &collision_id[ll, hcollision_idC23,

1;
1 I

int_arqs_matched = FALSE;
++error;

ch = l str_arqs_type_eot;
l str_arqs_type_eot='\O';

sprintf(error_msq_buff
l'sytax error.
:str_arqs_type

expected 6 integers to follow \“%s\“”

1 ;
*str_arqs_type_eot=ch;

break;
} else {

/* syntax error expected 6 ints */

/* set shared memory */
int_arqs_matched = TRUE;
if (Verbose) 1

printf("***putinq to shm collision ID:%d %d %d ",
collision_id[Ol, collision_idfll, collision_id[21);

I
(void) shmSet_TargetID(tgt_id);
(void) shmSet_EventID(collision_id 1;
(void) shmSet_QueryType(toke_guery_type 1;
(void) shmClear_QueryAnswered();
if (1 == shmSet_QueryPlacedO) {

query-placed = TRUE;
} else {

++error;
sprintf(error_msg_buff,"could not set share memory
; /* error could not set share memory */

1
1

‘“Ii.

42

break;

case T_VLS_QUERY_TYPE_MFK_BINARY_PDUS: /* not implemented yet */
default:
++error;
sprintf(error_msg_buff,"unsupported query type");
break;

)

if (query-placed == TRUE) (
static struct timeval timeout;
int polls;

int answered;
/*
* query is placed,
* Now wait for DisMonitor to answer the query.
*/

polls = 0;

Db_TimedOut_Clear(); /* set Db_Timedout==FALSE and start timer */
/*
* when timer goes off, then
* Db_Timedout is set to TRUE;
*/

while((l!=shnGet_QueryAnswered()) && (FALSE==Is_Db_TimedOut())) 1
/*

* sleep a short time
*/

timeout.tv_sec=O;
timeout.tv_usec= SERVER_DB_POLLING ; /* sleep for

* SERVER_DB_POLLING
* micro seconds
*/

select(NullFile_fd , (fd_set *)NULL, (fd_set *)NULL,
(fd_set *)NULL, &timeout):

)
answered=shmGet_QueryAnsweredO;

if (Verbose) C
if (answered==11 (

pri.ntf("server query answered after about %7.3f seconds\n"
, ((double) (polls*SERVER_DB_POLLING))/ 1000.);

} else (:
printf(
"server query NOI answered after %7.3f seconds (and %d polls).\n"

((double) (DB_TlXEOUT))/l.e+06
polls);

’ 1
1

if (answered) I
/*
* Read answer from shared memory.
*/

error = FALSE; /* Success - finally */

) else {
++error; /* ERROR! query timeout! */
sprintf(error_msg_buff,

"Timed-out waiting for VL DataManager response.");
)
) else if (FALSE == shmIsAttached0) 1
++error;

43

sprintf(error_msg_buff,
"VL server internal error: could not place query into shared memory!");

1 else if (FALSE == int_args_matched) {
. /* leave error message as is -

) else {
it describes #of ints expected */

/* UNKNOW ERROR - hopefully never will get here */
+cerror;
sprintf(error_msg_buff,

"VL server internal error: could not propperly process query!");
)

1

out:

if (error) 1
int len;

char msg[1281;
if (Verbose)

.

printf("Query not understood from client %d\n",pc->pkc_fd);
sprintf(msg,"%d: VLS ERROR. %s",query_id,error_msg_buff);
len=strlen(msg)+l; /* add 1 to also send the NULL terminator*/

(void) pkg_send(VI_MSG_TO_CLIENT,msg,len,pc);
} else {
if (TRUE != send_query_answer(pc,query_id, toke_query_type)) 1

/* error could not read shared memory
* or else could not send client the answer...
* But is almost certainly is the later,
* since we already tested for shm writing
* when queryslaced was set to true.
*/

printf("*** server could not send to client %d (query %d) !! !\n"
,pc->pkc_fd,query_id);

1
1

1

Figure 12. Enabling vlserver to Parse a New Querv Tvne (service quev_to_db()).

"123 QUERY TYPE_binaryCOLLISION_ProbAl1 ARGS_DIS_COLLISION_IDS 1 2 3 4 5 6 I

Figure 13. Sample ASCII Ouerv String: (sent to the vlserverl.

7.3.3. Remote Access to New VL APIs (responding to client queries)

In addition to monitoring the DIS environment (and storing certain PDUs for later use), the

DIS monitor also periodically monitors the shared memory link (mk_shm(3) in Appendix B) for new

queries placed by the vlserver. When it discovers that a query is pending, dis_mon uses the function

vls_link_service_wery() to servicethequery. Changesin vls_link_service_~ery() that

address collision damage queries (using the BINARY vulnerability methodology) are shown in bold

text in Figure 14. This function and other DIS monitor source code is located in the

$VLS_HOME/src/DisMon directory.

44

/*
- vls_link_service_queryO
*
* int vls_link_service_query(void);
*
* Extract the VL server query and attempt to service it.
* If serviced the query result is place in shared memory.
* (A successful service includes placing indicators into
* shared memory which tell the server to return an error
* message to the client.)
*
* returns 1 (TRUE) if success (in placing the query into shared memory).
* 0 (FALSE) if unsuccess.
*
*/
int vls_link_service_query(void)
{ VLS_Token ans_t, args_t;

int ret;
static char *whoami="vls_link_service_query() ";

ret = FALSE;

_rpt_error(_RE_CLEAF?_ERRORS,NULL); /* clear error
args_t = shmSet_Query~gsTypeO;

flags in rpt_perror*/

arls_t = shmGet_QueryType();

switch (args_t 1 I

/* called by DisMonitor */

case T_VLS_QUERY_TYPE_I'4FK_DIS_IDS:
ret = vls_link_serve_mfkDIS_IDS(ans_t);
break:
case T_ARGS_DIS_COLLISION_IDS:

ret = vls_link_serve_binaryCollision_DIS_IDS(ans_t);
break;

default:
cprint(CH_ERR,"%s: cannot handle \"%s\" (%d) arguments in query\n"

,whoami
,vls_token_name(args_t 1
, =gs_t

1;
break;

shmClear_QueryPlaced();
shmSet_QueryAnsweredO;

return(ret);

/* clear query pending flag */
/* set query answered flag */

Figure 14. Chancre (in dis man) to Accent New Oueries.

Figure 14 shows on line 32 that the type of query is passed (via the variable ans_t) to a
diction that calls the appropriate VL API routines and returns the results. That function
“vls_link_serve_binary~ollision_DIS_IDS()“ isshowninFigure15. Thiswholefunction
would have to be written since it does not yet exist.

45

- vls_link_serve_binaryCollision_DIS_IDS()
*
* static int vls_link_serve_binaryCollision_DIS_IDS(KM-Token ans_t)
*
* Service a query for a collision damage using BINARY methodology.
* return 1 (TRUE) if successful in placing the query into shared memory.
* 0 (FALSE) if not.
*/
static int vls_link_senre_binaryCollision_DIS_IDS(VU-Token ans_t)
{ DisID entityID[3], eventID[3];

int i, flg, ret, set_err_msg, int3[3];
VL_Result result;
float *probspace;
double prob;
static const char *whoami="vls_link_serve_binaryCollision_DIS_IDSO ";
static char answer_buff[l28];
VT_SetParam_t Dmg_Type;

set_err_msg = FALSE;
ret = FALSE;

/* get entity and event ID's */
(void) shmSet_TargetID(int3);
for (i=O; i<3; i++)

entityID[i] = (DisID) int3[i]; /* intl6 = int */
(void) shmSet_EventID(int3);
for (i=O; i<3; i++)

eventID[i] = (DisID) int3fi.l;
printf("%s:IDs are: %d %d %d %d %d %d\n", whoami

,entityID[Ol
,entityID[l]
,entityID [21
, eventID[Ol
,eventID[l]
,eventID[2]

);
Dmg_Type = VL_PARAM_SET_COLLISION;
switch(ans_t] {

case T_QTYPE_binaryCOLLISION_Result: /* Requested Format of Answer */

case

case

case

set_prob:

result = vl_binary_DIS_Result(
&flg, DmgType, entityID ,eventID);

if (flg!=O) /* result not from found table */
set_err_msg = TRUE;

ret = shmSet_VLResult(result,flg); /* called by DisMonitor */
break;
T_QTYPE_binaryCOLLISION_ProbAll:
probspace = vl_binary_DIS_ProbAll(Dmg_Type, entityID, eventID 1;
if (probspace==IVJLL) /* a type of error */

set_err_msg = TRUE;
ret = shmSet_binaryPS(probspace 1; /* called by DisMonitor */
break;
T_QTYPE_binaryCOLLISION_ProbDEAD:
prob = _vl_binary_DIS_ProbDEAD(Dmg_Type, entityID, eventID);
goto set_prob;
break;
T_QTYPE_binaryCOLLISION_ProbALIvE:
prob = _vl_binary_DIS_ProbALIVE(Dmg_Type, entityID, eventID);
goto set_prob;
break;

if (probcO.1 /* a type of error */
set_err_msg = TRUE;

46

ret = shmEet_.prob(prob); /* called by DisMonitor */
break;

default:
ret = FALSE;
cprint(CH_ERR,"%s: cannot handle %s vl result in query\n"

,whoami
,vls_token_name(ans_t));

sprintf(answer_buff, '**DB Handler ERROR") ;
break:

]

if (set_err_msg == TRUE) I
char *b, buffL2561;

/* Place error msg in shm (to be sent by server to client) */
,"-__---_-____-----_____-_-_-_------___---_______
* this is enough info:
* shnSet_ErrorEsg(rpt_error_getMsg());
*---~---_-_-----_--~___--_-_--_----~~----~~~~~~~--
* but the following is even more info:
*/

memset(buff,O,sizeof(buff));
strncpy(buff,rpt_error_getMsg(), sizeof(buff));
buff[sizeof(buff)-l]='\O';
/*
* See if there is more to report that sheds light on the error
* (that is more than the standard error msg).
*/
if (NULL != (b= _rpt_error_getLastAddedMsg())) {

int len;
len = strlen(buff);

if (len+3 < sizeof(buff)) { /* add ". ’ */
strcpy(buff+len,". “1;
len+=2;

I
strncpy(buff+len,b,sizeof(buff)-len); /* add extra msg*/
buff[sizeof(buff)-len-1]='\O';

]
shmSet_ErrorKsg(buff 1;

]
return (ret);

1

Figure 15. A Function to Process Collision Damage Oueries (using: BINARY method).

The first thing to notice about ~vls_link_serve_binaryCollision_DIS_IDS ()“is that it

derives the arguments from the shared memory link between dis_mon and the vlserver. This is

seen on lines 24 and 27 where the ID of the entity whose damage we are assessing and the ID of
the collision event that causes the damage are retrieved. The switch statement on line 39 is used
direct the program to call whichever V/L API will return the answer in a format that appropriately
reflects the client’s query. If you have a keen eye, then you may have noticed that the function

“shmSet_binaryPS () “ called on line 50 does not yet exist (and was not listed under the shared
memory library calls shown in the mk_shm(3) “man” page in Appendix B). This function would
have to be written, along with the corresponding “shmGet_binaryPS () “, and a space in the shared

47

memory area would have to be allocated to store the data. This is because room is allocated in
shared memory for the existing “MFK” methodology probability space, but there is no room as
yet for our newly defined “BINARY” vulnerability method. Fortunately, there is only enough
room for two floating point numbers (one for each of the outcomes we defined as possible for or
BINARY probability space) (namely, P~_BINARY_DEAD and PS_BINARY_ALIVE as we defined in
Figure 3, lines 42 and 43). Another thing missing from Figure 15 is the VL APIs that we call. We
do have some VL APIs defined for the BINARY methodology (as shown in Table 4), but those

APIs require PDUs as their arguments. However, the V/L APIs shown in Figure 15
(vl_binary_DIS_Result(),vl_binary_DIS_ProbAll(), _vl_binary_DIS_ProbDEAD(),Uld

_vl_binary_DIS_ProbALIVE (1) all require DIS “IDS” as arguments. Fortunately, writing these

functions is fairly straightforward. Remember that the DIS monitor is keeping track of all PDUs of

interest. It is simply a matter of finding the PDUs that are associated with the given IDS and then
using those PDUs as arguments to the V/L APIs that are not defined. Those defined V/L APIs

(Table 4 and Figure 5) use PDUs as arguments to initialize the vulnerability analysis, and therefore,
we simply call them and return their results. If further assistance is required, the source code for
any of the “MFK” “DIS-ID” functions may be examined. (These are the functions:
vl_mfkDIS_Result(),vl_mfkDIS_ProbAll(),_vl_mfkDIS_ProbK(),_vl_mfkDIS_ProbMF(),

_vl_mfkDIS_ProbF(), _vl_mfkDIS_ProbM(), ZUld_vl_mfkDIS_probNoDamage().) Thesource
codeisgiveninthefile $VLS_HOME/src/Vlapi/vl_dis.c:

Notice in Figure 15 that the results of these VL APIs (assuming they are eventually written)
are placed directly into shared memory (on lines 45,5 1, and 64). The DIS server will retrieve them
from there and pass them to the client who originally asked for the analysis, thus completing the
remote query.

8. SUMMARY

To review, in Section 3 we showed how to unpack, install, and compile the DIS lethality
server, as well as make some initial test runs.

We then explained the overall architecture of the server and the disposition of its major modules
in Section 4. Section 5 described the data tiles needed to initialize the server and their location.

Section 6 explained how client applications may connect to the server and pose remote queries.

48

In Section 7, we showed in detail how the server may be expanded to service just about any
vulnerability methodology (beyond just “MFK”) and how it could be used to describe damage
derived by other mechanisms (beyond just “munitions”).

49

50

INTENTIONALLY LEFT BLANK

.

REFERENCES

1. IEEE Computer Society. “Standard for Distributed Interactive Simulation-Application
Protocols.” IEEE Standard 1278.1-1995, Institute of Electrical and Electronics Engineers, Inc.,
NY, 1995.

2. Institute for Simulation and Training. “Enumeration and Bit Encoded Values for Use with
Protocols for Distributed Interactive Simulation Applications.” IST-CF-97-23 (Section
4.3.1.1, Platforms of the Land Domain), Institute for Simulation and Training, Orlando, FL,
3 June 1997.

3. Sauerborn G.C. Proceedings of the Second International Workshon on Distributed Interactive
Simulation and Real Time Aunlications. “The DIS Lethality Communications Server.” IEEE
Computer Society, pp. 82-87, 1998 (ISBN O-8186-8594-8).

4. Sauerborn, G.C. “Communicating Platform Vulnerability in a Distributed Environment.”
Paper: 98F-SIW-130, Simulation Interoperability Workshop Papers, The Simulation
Interoperability Standards Organization (SISO), pp. 809-8 15, September 1998.

5. Deitz, P.H., et al. “The Generation, Use, and Misuse of ‘PKS’ in Vulnerability/Lethality
Analysis.” ARL-TR-1640, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD,
1997.

6. Roach, Lisa K. “A Methodology for Battle Damage Repair (BDR) Analysis.” ALR-TR-330,
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1994.

7. Walbert, J.N., et al. “Current Directions in the Vulnerability/Lethality Process Structure.”
ARL-TR-296, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1993.

8. Roach, L.K. “Fault Tree Analysis and Extensions of the V/L Process Structure.” ARL-TR-
149, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1993.

INTENTIONALLY LEFT BLANK

.

52

APPENDIX A

INITIAL COMPILATION’S SAMPLE OUTPUT

53

INTENTIONALLY LEFT BLANK

.

54

INITIAL COMPILATION’S SAMPLE OUTPUT

Sample output from compilation script $VLS_HOME/compile.sh is given here. Warnings and

other messages will vary, depending on which compiler and operating system are used. The
output from this example was generated using a Silicon Graphics@, Incorporated (SGI) IRIXTM

5.3 OS with SGI’s ANSI C compiler (~3.19).
.

.

> Jcompilesh
starting in lusr/people/geoffs/server
---___________________-__-_-__ libs_____________________ _____
cd src/Libs/CommaDelim
make CC=cc RANLIB=echo install

cc - g -c -I. -c cdfc
ar UN 1ibcdf.a cdf.o I

a - cdfo
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating IibcdEa

echo 1ibcdf.a
1ibcdf.a

cp 1ibcdf.a ../../../lib/
cp cdf.h ../../../include

cd /usr/people/geoffs/Lserver
cd src/Libs/cprintf
make CC=cc RANLIB=echo install

cc -DANSIIC -c cprintc
ar urv 1ibcprint.a cprint.0

a - cprint.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating 1ibcprint.a

echo 1ibcprint.a
1ibcprint.a

cp libcprinta ../../../lib/
cp cprint.h ../..l../incIude

cd lusr/people/geoffs/Lserver
cd src/Libs/Scanner
make CC=cc RANLIB=echo install

cc -c -g -c scanner.c
ar urv 1ibscanner.a scanner.0

a - scanner.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating 1ibscanner.a

echo 1ibscanner.a
1ibscanner.a

rm scanner.0

.

rm -f ..l../../lib//libscanner.a
cp libscanner.a ../../..Aib/
chmod -w ../..l../libMibscanner.a
chmod ugo+r ../../../lib//libscanner.a
cp -p scanner.h ../../../include/scanner.h

cd /usr/people/geoffsiLserver
cd src/Libs/Matrx
make CC=cc RANLIB=echo install

cc -g -c -c matrx.c
cc -g -c -c disXf0rms.c
ar UIY 1ibmatrx.a matrx.o disXforms.0

a - matrx.0
a - disXforms.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating Iibmatrxa

rm matrx.o disXforms.0
rm -f ../../../lib/libmatrx.a
mv libmatrxa ../../../lib/libmatrx.a
chmod -w ../../../lib/libmatrx.a
chmod ugo+r ../../../libilibmatrx.a
cp -p matrx.h .,/.,/,./include

cd /usr/people/geoffs/Lserver
cd src/Db/TblReadee
make CC=cc RANLIB=echo install

cc -DANSIIC -g -I../../../include -I../../..linclude/H -c
iua_ke.c

cc -DANSIIC -g -I../../../include -I../../../include/H -c
iua_heat.c

cc -DANSIIC -g -I../../../include -I..l../..linclude/H -c
0thers.c

ar urv libtbl_rdrs.a iua_ke.o iua_heat.o others.0
a - iua_ke.o
a - iua_heat.o
a - others.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libtbl_rdrs.a

echo libtbl_rdrsa
libtbl_rdrs.a

cp libtbl_rdrsa ../../../lib/
cp tbl_rdrs.h ../../../include
rm libtbl_rdrs.a

cd /usr/people/geoffs/Lserver
cd srcNLapi
make CC=cc RANLIB=echo install

cc -I../../include -g -c -I../LibsiDIS/include -I../Db/ -c v1.c
cc -1JJinclude -g -c -I../LibsiDIS/include -I../Db/ -c

vl_bnry.c
cc -I../../include -a -c -I../Libs/DIS/include -I../Dbl -c

vl_dis.c
ar urv libv1.a ~1.0 vl_bmy.o vI_dis.o

a - ~1.0
a - vl_bnry.o
a - vl_dis.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libv1.a

echo 1ibvl.a
1ibvl.a

cp 1ibvl.a ../.Jlib
cp vl.h ../..lincIude
rm 1ibvl.a

cd /usr/people/geoffsiLserver
DIS manager is made a little differently---------:
/usr/people/geoffslLserver
cd src_sgi53/LIB
make CC=cc

cc -g -DBSD -c 1og.c
cc -g -DBSD -c pdu.c

cfe: Warning 665: pdu.c, line 607: Modified an rvalue.

55

((ArticulatParamsNode *)*n) = (ArticulatParamsNode
*)o ;

_A
cfe: Warning 665: pduc, line 610: Modified an r-value.

((SupplyQtyNode *)*n) = (SupplyQtyNode *) 0 ;
_A

cfe: Warning 665: pdu.c, line 613: Modified an rvalue.
((VarDatumNode *)*n) = (VarDatumNode *) 0 ;
_f+

cfe: Warning 665: pdu.c, line 616: Modified an rvalue.
((FixedDatumNode *)*n) = (FixedDatumNode *) 0 ;
_A

cfe: Warning 665: pdu.c, line 619: Modified an rvalue.
((VarDatumValue *)*n) = (VarDatumValue *) 0 ;
_A

cfe: Warning 665: pduc, line 622: Modified an rvalue.
((QueryDatumValueNode *)*n) =

(QueryDatumValueNode *) 0 ;
_A

cfe: Warning 665: pdu.c, line 629: Modified an i-value.
((TrackJam *)*n) = (TrackJam *) 0 ;

___ _*
cfe: Warning 665: pdu.c, line 632: Modified an rvalue.

((BeamDesc *)*n) = (BeamDesc *) 0 ;
_- _A

cc -g -DBSD -c pkg.c
cc -g -DBSD -c print.c
cc -g -DBSD -c byte_bnd.c

cfe: Warning 709: byte_bnd.c, line 2027: Incompatible pointer type
assignment

u32qtr = ptr;
__________________fi

cc -g -DBSD -c dis_client.c
cc -g -DBSD -c clientqdu_utils.c
cc -g -DBSD -c coords.c
cc -g -DBSD -c utmc
ar urv libdisa log.0 pdu.o pkg.0 print.0 byte_bnd.o

dis_client.o clientqdu_utils.o coords.0 mm.0
a - log.0
a - pduo
a - pkg.0
a - print.0
a - byte bnd.o
a - dis_&ent.o
a - clientgdu_utils.o
a - coords.0
a - utm.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating 1ibdis.a

cc -g -DBSD -c dis_server.c
cc -g -DBSD -c mgrgdu_uti1s.c
ar urv libdis_mgr.a log.0 pdu.o pkg.0 printo byte_bnd.o

dis_server.o mgJdu_utils.o
a - log.0
a - pduo
a - pkg.0
a - print.0
a - byte_bnd.o
a - dis_server.o
a - mgJdu_utils.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libdis_mgr.a

cd ..I..
cd src_sgiS.S/MGR
make CC=cc

cc -g -DIGN_SIGIO -DSGI -c dis_mgr.c
cc -g -DIGN_SIGIO -DSGI -c client_rout.c
cc -g -DIGN_SIGIO -DSGI -c netc

56

cc -g -DIGN_SIGIO -DSGI -c serverc
cc -g -DIGN_SIGIO -DSGI dis_mgr.o client_rout.o net.0

server.0 ../LIB/libdis_mgr.a -1m -0 dis_mgr
cd ..J..
cd src_sgi5,3/CLIENT
make CC=cc

cc -g -c&r -c c1ient.c
cc -g -c&r client.0 ../LIB/libdis.a -1m -0 client

cd ..I..
cd src_sgi5,3/PLAYBACK
make CC=cc

cc -g -DDEBUG -DSYSS -c p1ayback.c
cc -g -DDEBUG -DSYSS playback.0 ../LIB/libdis.a -Im

-0 playback
cd ../..
cd src_sgi5.3/UTIL
make CC=cc

cc -g -DDEBUG -DSYS5 -c btoa.c

cd ..I..
cc -g -DDEBUG -DSY$S btoa.o ../LIB/libdis.a -0 btoa

cd src_sgi5,3/UTIL/ByteBound
make CC=cc

cc -I..I..M -g -DMAIN -c byte_bnd.c
cfe: Warning 709: byte_bnd.c, line 2027: Incompatible pointer type
assignment

u32qtr = ptr;
____-__-_______---A

cc byte_bnd.o -L../../LIB -Idis
a.out

DISLIB: byte_boundsgr() unknown “OtherPDU” 0

byte boundaries for pdu type 1: EntityStatePDU
1 1 1 1 4 2 1 1 2 2
2 1 1 1 1 2 1 1 1 1
1 1 2 1 1 1 1 4 4 4
8 8 8 4 4 4 4 1 1 1
11 11 I1 11 11
1 1 1 4 4 4 4 4 4 1
1 1 1 1 1 1 1 1 1 1
1 4 -l+arparams start>

byte boundaries for pdu type 2: FirePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 2 2 2 2 2
1 1 1 1 8 8 8 1 1 2
1 1 1 1 2 2 2 2 4 4
4 4

byte boundaries for pdu type 3: DetonationPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 2 2 2 2 2
4 4 4 8 8 8 1 1 2 1
1 1 1 2 2 2 2 4 4 4
1 1 1 1 -l<var params start>

byte boundaries for pdu type 4: CollisionPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 2 2 1 1 4
4 4 4 4 4 4

byte boundaries for pdu type 5: ServiceRequestPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 1 1 1 1 -l%irparams start>

byte boundaries for pdu type 6: ResupplyOfferPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 1 1 1 1 -l~varparams start>

byte boundaries for pdu type 7: ResupplyReceivedPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 1 1 I 1 -I<varparams start>

byte boundaries for pdu type 8: ResupplyCancelPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2

byte boundaries for pdu type 9: RepairCompletePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 1 1

byte boundaries for pdu type 10: RepairResponsePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 1 1 1 1

byte boundaries for pdu type 11: CreateEntityPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4

byte boundaries for pdu type 12: RemoveEntityPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4

byte boundaries for pdu type 13: StartResumePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 4 4 4 4

byte boundaries for pdu type 14: StopFreezePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 4 1 1 1 1
4

byte boundaries for pdu type 15: AcknowledgePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 2 4

byte boundaries for pdu type 16: ActionRequestPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 4 4 4 -l<varparams start>

byte boundaries for pdu type 17: ActionResponsePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 4 4 4 -l<varparams start>

byte boundaries for pdu type 18: DataQueryPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 4 4 4 -l<varparams start>

byte boundaries for pdu type 19: SetDataPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 1 1 1 1 4
4 -l<var params start>

byte boundaries for pdu type 20: DataPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 1 1 1 1 4
4 -l<var params start>

byte boundaries for pdu type 21: EventReportPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 1 1 1 1 4
4 -l<var params start>

byte boundaries for pdu type 22: MessagePDU

1 1 1 1 4 2 1 1 2 2
2 2 2 2 1 1 I 1 4 -l<varparams start>

DISLIB: byte boundsqr() unknown
“Electromagn~ticEmissionsPDU” 23
DISLIB: byte_boundsgr() unknown ” ” 24

byte boundaries for pdu type 25: TransmitterPDU
1 1 1 1 4 2 1 1 2 2
2 2 8 1 1 1 1 8 8 8
4 4 4 2 2 8 4 4 8 2
2 1 1 1 1 -l<varparams start>

byte boundaries for pdu type 26: SignalPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 4 2 2 -1cvarparams start>

byte boundaries for pdu type 27: ReceiverPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 1 1 4 2 2 2 2

byte boundaries for pdu type 28: DesignatorPDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 1 1 4 4 4
4 4 8 8 8

DISLIB: byte_bounds_pr() unknown “CommentPDU” 29
DISLIB: byte_boundsgr() unknown “NO SUCH DEFINED PDU”
30
DISLIB: byte_boundsqr() unknown “NO SUCH DEFINED PDU”
31
cd ..I..
UX:mkdir: ERROR: Cannot create directory “lib”: File exists
UX:mkdir: ERROR: Cannot create directory “bin”: File exists
UX:ls: ERROR: Cannot access 1ibflibdis.a: No such file or directory
srclLibslD1Ylibflibdis.a
__________________________ data manager ____________________

ar UN libtbl_rdrs.a iua_ke.o iua_heat.o others.0
a - iua_ke.o
a - iua_heat.o
a - others.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libtbl_rdrs.a

echo libtbl_rdrs.a
libtbl_rdrs.a

cp libtbl_rdrsa ../../../libl
cp tbl_rdrs.h ../.J../include
rm libtbl rdrs.a
cc -I../../&lude -g -c -I../Libs/DISlinclude -c db_entity.c
cc -I../../include -g -c -I../Libs/DIS/include -c db:entmem.c
cc -I../../include -g -c -I../Libs/DIS/include -c str1mk.c
cc -I../../include -g -c -I../Libs/DIS/include -c db_init.c
cc -I../../include -g -c -I../Libs/DIS/include -c uti1.c
cc -I../../include -g -c -I../Libs/DIS/include -c misc.c
cc -L./,./include -g -c -I../Libs/DIS/include -c metatb1s.c
cc -I../../include -g -c -I../LibslDISlinclude -c db.c
cc -I../../include -g -c -I../Libs/DIS/include -c meta_mem.c
cc -I../../include -g -c -I../Libs/DIS/include -c tiny_url.c
cc -I../../include -g -c -I../Libs/DlS/include -c tbl_fints.c
cc -I../../include -g -c -I../Libs/DIS/include -c vlpararnc
cc -1JJinclude -g -c -I../Libs/DIS/include -c vl_meth.c
ar urv libv1db.a db_entity.0 db_entmem.o str1ink.o db_init.o

util.0 misc.0 metatblso db.o meta_mem.0 tiny_url.0
tbl_fmts.o vlparamo vl_meth.o
a - db_entity.o
a - db entmem.0
a - st&k.o
a - db_init.o
a - util.0

57

a - misc.0
a - metatbls.0
a - db.o
a - meta_mem.0
a - tiny_url.o
a - tbl_fmts.o
a - vlparam.0
a - vl_meth.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libv1db.a

DIS lethality server finished
installing libs and header files
in $VLS_HOME/lib and $VLS_HOME/include.
set $VLS_HOME to: /usr/people/geoffs/Lserver

.
echo 1ibvldb.a

1ibvldb.a
cp 1ibvldb.a J./lib
cp vl_meth.h ../../include
rm 1ibvldb.a

_____ _____--_.____---_-- TCP Lethality Server ------_--_-_
cc -g -DBSD -1JJinclude -I../../includeJ-IA.IB

-I../../include -c client_lib.c
cc -g -DBSD -I../../include -I../../include/I-I/LIB

-I../../include -c pkgc
ar urv libv1sclient.a client_lib.o pkg.0

a - client_lib.o
a - pkg.0
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating 1ibvlsclient.a

echo 1ibvlsclient.a
1ibvlsclient.a

cp libvlsc1ient.a .,/.,/lib
cp vls_toke.h v1server.h mk_shm.h ../../include
cc -g -DBSD -I../../include -I../..linclude/I-I/LIB

-I../../include -c server.c
cc -g -DBSD -I../../include -I../../include/H/LIB

-I../../include -c mk_shm.c
cc -g -DBSD -I../../include -I../../include/H/LIB

-I../../include -c server_libc
cc -0 server.exe -g -DBSD -I../../include

-I../../include/H/LIB -1JJinclude server.0 pkg.0 mk_shm.o
server_lib.o -L../..llib -Iscanner -Icprint -1vlsclient

cc -g -DBSD -I../../include -I../..linclude/WLIB
-I../../include -c clientc

cc -0 clientexe -g -DBSD -1JJincIude
-I../..linclude/H/LIB -I../../include client.0 -1vlsclient -L./
___________ _____ __________ DIS monitor _______-____ _-__-__-

cc -c -I../../include/H -I../..linclude/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO VL_SERVER Maine

cc -c -I../../include/H -I..l..~nclude&I/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER dis_misc.c

cc -c -I../../include/H -I../../include/I-I/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER processgduc

cc -c -I../../include/H -I../../include/WLIB -I./J/include -g
-DNOCLJRSES -DCONNECT_TO_VL_SERVER usrcmd.c

cc -c -I../../include/H -I../../include/H/LIB -L./J/include -g
-DNOCURSES -DCONNECT_TO VL_SERVER muniti0ns.c

cc -c -I../../include/H -I../../include&I/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER ent_list.c

cc -c -I../../include/H -I../..linclude/IULIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER fire_det.c

cc -c -I../../include/H -I../..linclude/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO VL_SERVER mk_shm.c

cc -c -I../../include/H -I../../include/H/LIB -L./J/include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER vIs_link.c

cc -0 dis_mon.exe -g -DNOCURSES
-DCONNECT TO_VL_SERVER Main.0 dis_misc.o processgdu.o
usrcmd.o mu&ons.o ent_Iist.o fire_det.o mk_shm.o vls_link.o
-L../..//lib -Idis -1cprint -lcurses -Im -Ivlsclient -IvIdb -Iv1 -Itbl_rdrs
-Iscanner -Imatrx -Icdf
UX:rm: ERROR: Cannot access
/usr/people/geoffs/Lserver/bin/*.exe: No such file or directory

58

APPENDIX B

MANUAL “MAN” PAGES

59

60

.

.

INTENTIONALLY LEFT BLANK

MANUAL “MAN” PAGES

These manuals are presented in the UNIXTM “man page” format. The directory

$VLS_HOME/d /oc contains these manuals in “man” page (.man) format. In addition, there are

versions in Hypertext Markup Language (HTML) (.html), PostScript (.ps), plain text (.txt), and
rich text format (.rtf).

The man pages are presented in alphabetical order:

cdf(3)
cprint(3)
db(3)
dis_mon(1)
dismgr(1)
matrx(3)
rrJk_shm(3)
scanner(3)
vl(3)
vlparam(3)
vls_db_init(5)
vlsclient(3)
vlserver(1)

The “(l)“, “(3)“, and “(5)” delineations are conventions used for “man” pages. These indicate
the general category of application that the manual addresses.

Some variants of UNIXTM stray from this numbering scheme (e.g., IRIXTM and Sun Solaris@

use “(4)” to describe file formats instead of “(5)“). In general, these are the applied manual
section numbers:

Section “(1)” man pages are for applications and user commands.
Section “(2)” indicates an operating system level library call.
Section “(3)” manuals are for user library calls (such as math library functions, etc.)
Section “(4)” manuals document devices (such as memory, tape, etc).
Section “(5)” manuals describe file formats.
Section “(8)” are for “miscellaneous” other things (such as a man page describing the
ASCII codes, etc.).

The directory structure and how it relates to the various modules in the DIS lethality server

are shown in the Figures B-l and B-2. Figure B-l is a replaction of Figure 2 showing where
module source code is located. Figure B-2 shows the current directory organization.

61

The directory structure and how it relates to the various modules in the DIS lethality server

are shown in the Figures B-l and B-2. Figure B-l is a replaction of Figure 2 showing where

module source code is located. Figure B-2 shows the current directory organization.

DIS Nehvork Trakic

1 UDP
link

_ibs/DIS/

I-
...

..

. Single Host Computer i
.

*............,...................

$VLS_HOMEkrc/Libs/DIS/src/dismgr

$VLS_HOME/src/DisMon

$VLS_HOMEkrcNLapi

$VLS_HOME/src/Db

$VLS_HOME/src/Server

Figure B-l . Major Module Source Code Locations.

VL Server Directory Structure

Figure B-2 . Directory Structure.

62

CDF(3) CDF(3)

NAME
cdf_strtok() cdf_scan_fields()

Read ASCII data in comma-delimited fields.

SYNOPSIS
##include “cdEh”

char *cdf_strtok(char *str , int *flag, int literal);
int cdf_scan_fields(char *fields[], int num_fields, char*hufferjnt *cdfflag);

DESCRIPTION
cdf_strtok() is similar to strtok() but specialized for comma-delimited fields. cdf_strtok() reads aud
returns pointers to the comma separated field(s) within the argument string str. The returned string will be
the characters found between field separators (the comma). [Note: If the field between commas is empty,
(e.g. “,,” then an empty string will be returned). On subsequent calls if str is set to NULL, cdf_strtok() will
return subsequent comma-delimited fields from within the original string until no more fields are found (at
which point a NULL is then returned). The integer pointed to by Jlag is set to -1 if the field ended before a
comma or newline was found (this can only occur in the case of a quoted string field being read. That is
when (“) is the first character in a field, (at which point cdf_strtokO expects a quoted string field). When a
quoted string is read the whole field content is return (including the enclosing quotes (‘I)). Within a string
field the quote character (‘I) itself may be quoted by placing the literal character directly in front of the
quote character. The literal character is defined by passing it to cdf_strtok() via the Ziteral argument.
Some databases may use the quote “I’ character as the literal (e.g. ‘This is a string with ““embedded
quotes”““). Also the literal character is often the backslash T (e.g. ‘This is a string with /“embedded
quotes\““).

cdf scan fielaS() scans the comma separated fields found in the string buffer pointed to by bu$er. The
number 07 fields expected is specified by numjields. cdf_scan fields0 will attempt to read this number of
fields and will return the memory allocated (via malloc()) s&g duplicates of these fields in the string
pointer array pointed to by &UT. cdf_scan_fieldsO returns 0 on an error. If a quoted comma separated
field ends prematurely, then -1 is returned in cd@%g. If there was no error, then the number of fields read is
returned and the (malloc’d) string contents of those fields are returned inJieZ&[]. It is the caller’s responsi-
bility to free this allocated memory (by calling free(3)).

BUGS
The quote character is fixed (as “) (this might be made user selectable).

SEE ALSO
strtok(3) free(3) malloc(3)

AUTHOR
Geoff Sauerbom <geofi@arl.mib 1996,1997,1998.

$Revision: 0.7 $ Jan 1998 1

CPRrNT(3) CPRJ.NT(3)

NAME
cprint_control, cprint, cprint_fflush, cflush

rpt_perror, xpt_error_getErrno, rp_error_getMsg, _rpt_error_getLastAddedMsg,

SYNOPSIS
#include “cprinth”

int cprint control(int channel, int onofE, FILE*dest);
int cprint?int channel, char *fmt, . ..).
int cprint BBush(int channel);
int cflushcint channel);

void _rpt_error(int re_msg num, char *addedmsg);
void rpt_perror(char *mor&fo);
int rp_error_getErrno(void);
char* rpt_error_getMsg(void);
char *_rpt_error_getLastAddedMsg();

DESCRIPTION
This library provides some error handling routines and a means for printing to and redirecting channeled
text messages.

The cprint routines are used to print to a channel. Three channels are predefine& CH_ERR, CH_WARN,
and CH STAT. These tie intended for printing error, warning, and status messages respectively. .By
default these channels start as “stderr”, however, applications can turn on/off or redirect any of these chan-
nels by calling cprint_control(). Channels are written to via cprint().

The error message functions are meant to assist library writers in tracking errors in lower level functions.
When an error occurs in a lower level library _rpt_errorO is called. The higher level library has the option
of ignoring the message or using it (via rptgerroro). This is similar to the way perror(3) works. The
advantage to rpt_error() is that you may add your own system error codes and messages. Additionally there
is provision for calling error handling functions. These changes are made by editing the static structure of
error signals and messages. This structure is an array called re_msg_messages[] found in cprint.c

Library function details:
/*
I cprint_control();
*
*
* int cprin_control(int msgtype, int on-off, FILE* destination);
*
* an interface to allow applications to control lower LIBRARY
* msg level & destination.
*
* msg_type is one of: CH_ERR
* CH_WARN
* CH_STm
* on-off is qne of: 0 (turns off reporting all msgs of msgtype)
* 1 (turns on reporting message of msg_lype)
*
* destination if not NULL, will redirect
* and write all messages of type msg_type to

$Revision: 0.4 $ Feb 1998

CPRINT(3) CPRINT(3)

* the file pointed to by destination.
*
* returns 1 on success 0 on failure.
*
*I

m, qxin_fflush() and cflush()
*
* int cflush(msg_channel)
* int cprint_fflush(msg_channel)
*
* channel is one of
* CH_ERR
* CH_WARN
* CH_STAT
*
* mimics return value of fflush(FILE *)
*
* On successful completion these functions return a value of
* zero. Otherwise EOF is returned. For fflush(NULL), an
* error is returned if any files encounter an error.
*
* cprint_fflush() and am synonyms for themselves cflush()
*
*/

- cprint()
*
* int cprint(msg_chamrel, fmt, args....)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

prints a message on a PRG Error channel.
defined default channels (“msg_channel”) are:

CH_ERR
CH_WARN
CH_STAT

fmt is standard formatted print format (see printf())

args are optional variable arguments for formatted print.

Return value:
mimics vprintf (returns #of characters transmitted or - 1 on err).

On successful completion these functions return a value of
zero. Otherwise EOF is returned. For fflush(NULL), an
error is returned if any files encounter an error.

see also:
cfiush(), cprint_control()

Feb 1998 2$Revisiom 0.4 $

CPRINT(3) CPRINT(3)

*

*/

/*===*/

/* error handler (for known errors) */
/*===*/

/*
- _rpUrror()
*
* void _rpt_error(int re_msg_num, char *addedmsg)
*
* report a known message number to error system for processing.
*
* re_msg_num is the numeric id of the error.
*
* addedmsg is an additional string of text to be printed
* along with the system default message.
* The system default message, (and addedmsg), are only
* printed when rpt_perror() is called.
*
* if addedmsg == NULL, then just the system default
* message is printed (only after rpt_perror() is called).
*
* An internal PRG system error handh.ng function is called
* for each known error (re_msg_num).
*
*/

* void rpt_perror(char *s)
*
* print to stderr the last reported error
* (which was generated by a _rpt_error() call.
*
*/

_ rpt_error~etRrrno()
*
* int rpt_error_getErrno(void);
*
* returns the integer value of the last error generated.
*
* The integer returned is not the same as the values defined
* in the unix &o(2),
* This value should never be compare to a number (e.g. “3”)
* Rather, compare the value with the enumerations defined
* in rpt_err.h
*

$Revision: 0.4 $ Feb 1998 3

CPRINT(3) CPRINT(3)

* See cprint.c for a list of errors numbers and messages.
*
* e.g. if (rp_error_getErrno() == RE_EISCONN)
* printf(“socket in use”);
*
*I

- rpt_error_getMsg()

r char* rpt_error_getMsg()
*
* Return a text message associated with the last error generated.
* The last error was generated via the last call to _rpt_error().
h
*I

_ _rp_error_getLastAddedMsg()
*
* char *_rpt_error_getLastAddedMsg(void);
*
* Get the last “added message” that was
* added to the standard error message
* via the _rpt_error(int error-no, static char *an_added_msg)
*
* RETURNS
* a pointer to the %n_added_msg” string.
* NULL if no message was ever added on the last call to _rpt_error().
*
*
*/

RE_EPERM No permission match
Rl_ENOENT No such file or directory
RE_ESRCH No such process
RE_EINTR Interrupted system call
RE_EIO I/O error
RE_ENXIO No such device or address
RE_E2BIG Arg list too long
RE_ENOEXEC Exec format error
RE_EBADF Bad file number
RE_ECHILD No child processes
REEAGAIN Resource temporarily unavailable

REEWOULDBLOCK
RE_ENOMEM
RE_EACCES

Operation would block
Not enough space
Permission denied

$Revision: 0.4 $

Defined error messages (for use in _rp_error(>):

Feb 1998 4

CPRINT(3)

Rl_EFAULT
RE_ENOTBLK
RE_EBUSY
RE_EEXIST
Rl_EXDEV
RE_ENODEV
RE_ENOTDIR
RE_EISDIR
RE_EINVAL
RE_ENFILE
RE_EMFILE
REENOTTY
RE_ETXTBSY
RE_EFBIG
REENOSPC
RE_ESPIPE
RJ_EROFS
RE_EMLINK
RE_EPIPE
RE_EDOM
lU_ERANGE
RE_ENOMSG
Rl_EIDRM

RE_EDEADLK
RI_ENOLCK

RE_ENOSTR
RE_ENODATA
RE_ETIME
Rl_ENOSR

RI_ENOPKG

RE_EPROTO

RE_EBADMSG
RJ_ENAMETOOLONG
IU_EOVERFLOW

RE_ELIBACC
RE_ELIBBAD
RE_ELlBSCN
RE_ELIBMAX
RE_ELIBEXEC

RI_ENOSYS
REELOOP
RE_ERESTART
lU_ESTRPIPE
RE_ENOTEMPTY

RE_ENOTSOCK

$Revision: 0.4 $

CPRINT(3)

Bad address
Block device required
Device or resource busy
File exists
Cross-device link
No such device
Not a directory
Is a directory
Invalid argument
Too many open files in system
Too many open files in a process
Inappropriate IOCTL operation
Text file busy
File too large
No space left on device
Illegal seek
Read-only file system
Too many links
Broken pipe
Argument out of range
Result too large
No message of desired type
Identifier removed

Deadlock situation detected/avoided
No record locks available

Not a stream device
No dam available
Timer expired
Out of stream resources

Package not installed

Protocol error

Not a data message
File name too long
Value too large for defined dam type

Can not access a needed shared library
Accessing a corrupted shared library
.lib section in a.out corrupted
Attempting to link in more shared libraries than system
Cannot exec a shared library directly

Operation not applicable
Too many symbolic links in path name traversal
Restartable system call
If pipe/FIFO, don’t sleep in stream head
Directory not empty

Socket operation on non-socket

Feb 1998 5

CPRINT(3)

RE_EDESTADDRREQ Destination address required
REEMSGSIZE Message too long
RE_EPROTOTYPE Protocol wrong type for socket
RE_ENOPROTOOPT Option not supported by protocol
RE_EPROTONOSUPPORT Protocol not supported
RE_ESOCKTNOSUPPORT Socket type not supported
RE_EOPNOTSUPP Operation not supported on socket
RE_EPFNOSUPPORT Protocol family not supported
RE_EAFNOSUPPORT Address family not supported by protocol family
RE_EADDRINUSE Address already in use
RE_EADDRNOTAVAlL Can’t assign requested address
RE_ENETDOWN Network is down
RE_ENETUNREACH Network is unreachable
RE_ENETRESET Network dropped connection on reset
RE_ECONNABORTED Software caused connection abort
RE_ECONNRESET Connection reset by peer
Rl_ENOBUFS No buffer space available
RE_EISCONN Socket is already connected
RE_ENOTCONN Socket is not connected

RE_ESHUTDOWN
RE_ETOOMANYREFS
RE_ETlMEDOUT
RE_ECONNREFUSED
RE_EHOSTDOWN
Rl_EHOSTUNREACH
RE_EALREADY
RI_EINPROGRESS
RE_ESTALE
RE_ECANCELLED
RE_EDQUOT
RE_ENFSREMOTE

Can’t send after socket shutdown
Too many references: can’t splice
Connection timed out
Connection refused
Host is down
No route to host
Operation already in progress
Operation now in progress
Stale NFS file handle
Cancelled
Disc quota exceeded
Too many levels of remote in path

CPRINT(3)

the following are examples of application
system specific errors which have been added
to the library. You nay renwve these and add
your own.

RE_DBERR
lU_DBFLDERR
RE_DBBADKEY
RE_TGT_UKNOWN
RE_THREAT_UKNOWN
RE_DET_EVENT_UKNOw
RE_NO_META_REC
RE_vLSOURCE_INTERP
RE_NO_ENVIRON_DAIA

Rl_NOSHM

$Revision: 0.4 $

General Master Data Base Error
Invalid field in database element
Invalid or dangling key pointer
Invalid or undefined target entity
Invalid or undefined threat entity type
Invalid or undefined detonation event
V/L, Data meta record not found.
Error interpreting V/L source data.
Could not find or set V/L environment
(initial) parameters for this case.
Shared memory not attached.
An attempt was made to access or set
shared memory which has not been attached
to the current process.

Feb 1998 6

CPRINT(3) CPRINT(3)

BUGS
Really this should be separated into two libraries (cprint and @-error).

SEE ALSO
printf(3), perror(3), ermo(3), strsignal(3)

Author
Geoff Sauerbom cgeoffs@url.miZ> , US Army Research Lab. 1996,1997,1998.

$Revision: 0.4 $ Feb 11998 7

DW) DW)

NAME
A Data Management API layer.

SYNOPSIS
db_init, db_MetaTable_query, db_MetaTable_retrieve,
db_tbl_result_func, db_tbl_fmt_type, db_tbl._fmt_result_type

db_tbl_retrieve, db_tbl_reader_func,

DESCRIPTION.
DB (which should really have a name change to DM) is an Application Programming Interface (API) to
the data management layer of the Distributed Interactive Simulation @IS) Lethality server.

.
The Data Manager (db) keeps track of vulnerability tables, and DIS entity IDS. It is mostly data driven in
that you specify which entities are associated with which tables. This is done in the in the DAM-
AGE SOURCE MBTA DATA FILE record of the initialization file (see vls_db_init(5)). The file
name; for the %AMA~E_SO~CE_META_DATA_FILE, DIS_ENTITIES_FILE, and DIS_AUXlL-
IARY_ENTITIES_FILE are found in the data manager initialization file. The file name of the data man-
ager initialization file is passed to db_init(). db_iuit() assumes that the filename passed is relative to the
current working directory, or if the environmental variable VIS_HOME is set, relative to the
$VLS_HOME/Data/Initl directory. Once db_initO is called (and does not return an error), other Data
Manager API calls may be made.

Internally the data manager maintains correlations between pik tables and their associated entities via meta
data records. These records are structures which contain DIS enumerations for the target and threat as well
as identifiers for the Vulnerability/Lethality methodology to be used, the location of the lethality data, and
an identifier specifying what the format is for that data. This meta data record contains the following fields:

TargetID
ThreatID
VL method used
Table format
Table location

(defines how to interpret data results)
(how to parse the data to fmd results)
(how/where to get data)

The Table formut field serves a second purpose. It is also used to determine what type of data is returned by
the data reader function for that particular table format. (Currently only MFK probabilities are returned by
any data reader function known to the data manager (see the VL(3) api vl_mfk_ArlDIS_ProbAll_NoNet()
for further explanation of the MFK data). Any type of okta may be returned by a reader-function (not just
MFK data), The api db_tbl_fmt_result_typeO is used to determine the type of data that is returned).

After calling db_init(), meta data for all targets/threats will have been read. However, none of the actual
data sources (Tables) will have been loaded into memory. To read a source data (table) into memory, first
identify the meta data record associated with the entity and target of interest. This is done via the
db_MetaThble_query() API

unsigned int* db_MetaTable_query(MetaTable_t *qrec, int *nfotmd);

db_MetaTable_queryO returns index key(s) which can be used to access the meta record(s) queried from
the metadata database. The passed argument (qrec) points to a meta record in the form of a query. In this
passed query record, the target, threat, analysis method, and table format to be sought are entered. NULL
fields will match all records in a category. For example:

TargetID
ThreatID

= T72
= M829

$Revision: 0.6 $ March 1998 1

DW) DW)

VL method used = Munition
Table format = IUA_KE

Note that the above examples are illustrative only of the type (meaning of) data passed to db_MetaT-
able-query{). For example the ThreatID is actually set to a record of seven (7) integers (the DIS enu-
meration} and not the litteral text ~829 . See db_MetaTable_quexyO for informution on the actual
data structure formats which are passed and returned. db_MetaTable_queryO returns a key(s). Using a
key obtained in this manner, the table’s meta record can be retrieved from the data manager’s internal
database via db_MetaTable_retrieveO.

MetaTable_t *db_MetaTable_retrieve(unsigned int key);

Since the meta record returned by db_MetaTable_retrieve() contains the actual location of the lethality
data (in URL format), db_tbl_retrieve() can then be used to retrieve a pointer to the actual source data of
that table (and load its data structure in memory).

void *db_tbl_retieve(MetaTable_t *met >

If this table has never been read into memory, the table will be loaded into memory (and remain there) at
this time. Subsequent. calls to db_tbl_rettieve() will not re-load the table into memory, rather they will just
return a pointer to the data structure of the (already loaded) table. There is currently no facility (API) to
unload tables and free memory or force a re-read.

After a successful call to db tbl_retrieve0 results from this table may be looked-up. However, first the
appropriate data look-up fur&on must be obtained by calling db_tbl_result_funcO. To actually look up
the lethality results, the function pointer returned by db_tbl_result_func() is then used and passed a pointer
to the internal data structure of that lethality data. (That is, it is passed the value returned by
db_tbl_retrieveO).

An important point to note is that before calling the lookup function, all parameters which define the lethal-
ity event’s initial conditions must first be set. These parameters are global variables defined in the
$VLS_HO&IE/src/Db/vlparam.h and are set in the _vlp API (see vlparam(3)). For instance
vlp zero allgaramso may be called set all these parameters to zero and should be called prior to setting
in& co&i&ions. See vlparam(3)

Often this is referred to as the VLPARAM layer. The lethality result function (which was returned by
db_tbl_result_func()) will use these parameters to calculate (or look-up) the vulnerability effects.

To review, these are the steps needed to retrieve lethality results:

1. Set the parameters which define lethality initial conditions (via the VLPARAM layer).
2. Call db_MetaTable_query() to find out if there is data available which applies to the target and threat
of interest.
3. If so, then call db_MetaTable_retrieve() to retrieve a meta record for the data of interest.
4. Using the this meta record, call db_tbl_result_func() to get a pointer to a data retrieval function that
will lookup and return the lethality result (when it is called).
5. Using the same meta record, call db_tbl_retrieve() to get a pointer to the lethality data (in memory).
6. Pass this lethality data pointer as an argument to the data retrieval function that was obtained in step 4.
7. The data retrieval function will then return the appropriate lethality results.

The following code segment example is based on the undocumented test application
$VLS_HOMWsrr/Db/dbtest.c:

$Revision: 0.6 $ March 1998 ,* 2

(MetaTable_t mquery, *mrec;
VL_Meth *method_struct;
float *f, *(*funcptr)(void *);
static dbEntityType _Mk_82 = {Z, 9, 225, 2, 73, 1); /* 500 lb bomb */
static dbEntityType _T80 = (1, 1, 222, 1, 1, 1, O}; /* Russian tank*/

if (0 == db_init("vls_db_init.ini")) {
perror("could not open vls_db_init.ini");
exit(l);

3

/*
* Get meta record.
*/

mquery.tgt = &_TEo;
mquery.threat = &_Mk_82;
mquery.vl_meth= "DIS HitToKill";

/* "DIS HitToKill"
* indicates that VL_PARAM_SET_METH_DIS_HitToKill
* is the method ID.
*/

/*
* VL_PARAM_SET_METH_DIS_HitToKill
*
* Identifies both the type of output and the type
* of inputs (PDUs) required to do the look-up.
* It also defines certain actions that may be taken.
* For instance (in higher API layers (the VL layer)) the
* DIS server will ignore the returned results if the
* munition did NOT make.a direct hit against the target.
*

*/
mrec = MetaTable_get_rec(mquery.tgt, mquerythreat, VL_PARAM_SET_METH_DIS_Hi

if (mrec == NULL) I
puts("Error not such data record");
exit(O);

1
/*
* data retrieval function.
*/
funcptr = db_tbl_result_func(mrec);
if (funcptr != NULL ')
/*
* use data retrieval function to lookup results.
* Pass a pointer to the look-up table.
* The look-up table is already loaded into memory.
*/
f = funcptr(db_tbl_retrieve(mrec));

// else
f = NULL;

if (f!= NULL) {
int j;

$Revision: 0.6 $

/* The reader function returned some data...*/

March 1998 3

DJW) DJW

VL_Result type_of_output;
/*
* we now print what this data returns as its output.
*/
type_of_output = db_tbl_fmt_result_type(mrec->tblfmt) ;
if (type_of_output == _PS_MFK_LOWER_BOUND) {

/* - Note: by examining the meta record describing this data's
* format "mrec->tblfmt" with db_tbl_fmt_result_type()
* (which returned ' _PS_MFK_LOWER_BOUND"),
* we now know that the data returned are an array of
* kill probabilities (M,F,MF,K,and No Damage).
*/
for (j=PS_MFK_M; j<=PS_MFK_NODAMAGE; j++) {

printf("%d: %fO,j,f[j]); /* show some data*/

3
1

1 else {
puts("no results from table lookup! -ERROR");

1
1

Synopsis ofthe API functions are now giveninthefollowing order:

.

.

db_init()
db_MetaTable_query()
db_MetaTable_retrieve()
db_tbl_retrieve()
db_tbl_reader_func()
db_tbl_result_func()
db_~bl_fmt_typeO
db_tbl_!?nt_result_type()

/*
- db_init()
*
* int db_init(char *db_init_filename
*
* General initialization for database
* Initialization file name (in string
* This file is opened and parsed. In
* be found identifying things like:
*
* all DIS dbEntity ID's
* extra DIS dbEntity ID's
*

>

level.
form) is passed as an argument.
the file various filenames will

(DIS_ENTITIES_FILE)
(DIS_AUXILIARY_ENTITIES_FILE) +

* and where to find damage mechanism and data for different
* target/threat interactions: (DAMAGE_SOURCE_META_DATA_FILE)
*
* These files are opened and read by there appropriate initialization
* function.
*
* Returns:
*

$Revision: 0.6 $ March1998 4

.

* 1 if successful.
*
* 0 if an error occurs somewhere (either in reading the
* db_init_filename filename itself or one of the
* other files to be read). e.g.:
* DIS_ENTITIES_FILE,
* DIS_AUXILIARY_ENTITIES_FILE, etc...
*

*/
int db_init(char *db_init_filename);

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

db_MetaTable_query()

unsigned int *db_MetaTable_query(MetaTable_t *mrec, int *num_elements)

Try to find record(s) matching portions of the data record passed.
Elements are logically ANDed together.
Wildcard is a NULL field. (all zeros in the case of the DIS entity
fields.

If the query is successful (data items found), their database keys
are returned in an array. The length of the array is returned
by setting the int pointed to by num_elements to the number of
elements (keys) in the array. These keys can be used with
mtbl_retrieve_data() to retrieve the record(s).

currently only the fields:

tgt
threat;
vl_meth;
tblfmt;

- DIS ID of tgt
- DIS ID of threat
- type of analysis
- format of lookup

identifier
table

are queried on. (all other fields are ignored).

RETURNS NULL is returned by the function if there were no matches
otherwise (if there were matches) the the function returns
a pointer to an array of keys. (A key is used to retrieve
the record - see db_MetaTable_retrieve()).
The number of elements in recored is passed by setting num_elements.

NOTE: this array must be free by calling functions.
NOTE: MTBL_QUERY_MAX is an internally defined constant of the Maximum

number of elements that will be returned in the array...

*/
#define MTBL_QUERY-MAX 100
unsigned int *db_MetaTable_query(MetaTable_t *mrec, int *num_elements)

/*

$Revision: 0.6 $ March 1998

DW) DW)

- db_MetaTable_retrieve()
*
* MetaTable_t *db_MetaTable_retrieve(unsigned int key);
*
* db_MetaTable_retrieve() returns the meta record associated with
* a database index value "key".
*
* RETURNS
* pointer to the table meta record (MetaTable_t *)
* NULL if no record found or an error occurred.
*/

MetaTable_t *db_MetaTable_retrieve(unsigned int key);

/*
- db_tbl_result_func()
*

* void * db_tbl_result_func(MetaTable_t *mrec)
*
* returns a pointer to the result function
* which knows how to interpret the set
* VL_Parameters, lookup the approprate results
* in the lookup table.
*
* The Table data is in the format specified
* found in the tblfmt field of the passed mata record
* parameter
*
* Returns:
*
*
* See also:
*
*

*/

argument (mrec->tblfmt).

pointer to the table look-up (result) function.
NULL on error.

db_tbl_reader_func()
db_tbl_fmt_type()

void * db_tbl_result_func(MetaTable_t *mrec);

/*
- db_tbl_retrieve()
*
* void *db_tbl_retrieve(MetaTable_t *);
*
* Retrieve a pointer to the data structure which holds
* the source data of a table loaded into memmory.
* This pointer is passed to the table look-up function which
* the function that knows how to parse this data structure.
*
* RETURNS: pointer to a table loaded into memmory.
* NULL if table is not loaded into memmory or other error.
*
* See also:
* _db_tbl_load_source() - called only once. (not needed)
*

$Revision:0.6 $ March1998 6.

*/
void *db_tbl_retrieve(MetaTable_t *metr_ptr)

/*
- db_tbl_fmt_type()
*
* TblFmt_Enum db_tbl_fmt_type(char *fmtname)
*
* returns a TblFmt_Enum that corresponds to the string "fmtname"
* (positive integer) if the string represents
* a recognized format.
* _TBLFMT_ERROR (0) otherwise (a failure).
*
* See also: db_tbl_fmt_returned_data_type()
* the
* the
*

*/
int db_tbl_fmt_type(

/*

TblFmt_t structure (struct _TblFmt_t)
LookUp_Tbls[] and TblFmtZResult[] arrays.

char *fmtname)

- db_tbl_fmt_result_type();
*
* VL_Result db_tbl_fmt_result_type(char *fmtname)
*
* RETURNS the data type returned by the table's reader function
* which reads the data source described by "fmtname".
*
* a returned value of _PS_MFK_LOWER_BOUND means "MFK" type.
*
* PS_ERROR is returned if "fmtname" is unrecognized
* or another error occurs.
*
* SEE ALSO: db_tbl_fmt_type()
* db_tbl_result_func()
*

*/
VL_Result db_tbl_fmt_result_type(char *fmtname)

FILES
$VLS_HOMEJData/Init/vls_db_iniCni
vls_db_init.ini is the initialization file for the data manager. The environmental variable VLS_HOME
mustbe setto the root directory ofthe DIS Lethality server or ifnot,the initializationfileislookedforrela-
tivetothe currentworking directory oftheparentprocess.

SEEALSO
Other DIS Lethality server components:

vls_db_ini@) vl(3) vlparam(3)

AUTHOR
Geoff Sauerbom cgeo&@arl.mil> , US Army Research Lab. 1997,1998.

$Revision: 0.6 $ March 1998 7

DIS_MON(I) DIS_MON(1)

NAME
dis_mon

SYNOPSIS
dis_mon -d DIS_mgr_host -e exercise-ID -F [big I little] -D Dport -v Vport -S

DESCRIPTION
Dis_mon @IS Damage Monitor) is a part of the DIS Lethality server, but may also be used to monitor DIS
exercises for lethality effects in a stand alone mode.

When dis_mon runs in conjunction with the DIS Lethality server vlaerver , it serves as a ‘back endIs for
vlserver - doing the grunt work for the server. (e.g. looking-up lethality results).

Dis_mon uses the ARL DIS Manager to connect to the DIS network, therefore the ARL DIS Manager must
be installed and running first. (See dis_mgr(l)).

Dis_mon listens to DIS Protocol Data Units (PDUs) paying attention to only certain PDUs that may have
an intluence on the damage state of simulation entities. Currently the DIS Monitor only listens to Fire,
Denotation, and Entity State PDUs. The reason only these PDUs are monitored is because the DIS lethality
server only knows how to respond to queries relating to “munition” type damage. Other vulnerabil-
ity/lethality methodologies which might require other types of “trigger” events might require the monitoring
of other types of PDUs. For example, system damage caused by some means of electronic warfare may
require monitoring the Electromagnetic Emissions PDU.

When started the DIS Monitor will attempt to connect to the DIS lethality server via a shared memory link.
This implies that the DIS lethality server (vlserver) must already be rnnning on the same computer. Once
connected to vlserver the DIS Monitor may respond to queries made by the vlserver on behalf of vlserver’s
clients.

Note, if for any reseason the vlserver is stopped or restarted, the DIS monitor must also be restarted. This
is because the vlserver creates a shared memory location for joint use during start up. When dis_mon is
started, vlserver communicates to dis_mon the location of the shared memory resources. If dis_mon is
already running when vlserver is started, they will both be using d@erent shared memory locations. Thus
if vlserver is restarted, dis_mon must also be restarted. Of course, restarting dlamon means that all
knowledge of lethality events already monitored will be lost up to the point of the restart.

Stand Alone Mode:

Dis_mon does not need to operate in conjunction with vlserver. If run by itself, dis_mon may be used to
monitor DIS entities and their lethality states. The following commands are accepted from the keyboard

r - provides a “rollup report” to the console.

q - may be used to quit and exit dis_mon.

Data in the rollup report merely reflect what is being broadcast by the DIS simulations controlling the enti-
ties. A rollup report output will produce a list (one entity per line) showing certain entity states as reported
from the ‘Entity Appearance Field” of the Entity State PDU. Its output will look similar to the following
example:

t racking 2 Ent i t ies in Exerc ise 37

Mon Mar 9 16:13:40 EST 1998

$Revision: 0.3 $ March 1998 1

DIS_MON(1) DIS_MON(1)

__Entity______--_____----- ___KILL___ ___-__~a~~~~----_- ----smoke---- Times
Frc ID Type Mobil FireP Slght Modrt Dstryd Plm Eng PlmEng Hit

1 1005 It FMC Ml13 Armor 0 0 0 0 0 0 0 0 0
2 1006 11 BRDM-2 Reconna 0 0 0 0 0 0 0 0 0

1

FRIENDLY
(Force ID 1)

(blue)

FOES
(Force ID 2)

(red)
__---------- _______----

KKilled 0 0
MKilled 0 0_
FKilled 0 0
MFKilled 0 0

The columns seen represent the following information. Values denoted by “Bool:” are boolean values
(where a value of 1 means ‘TRUE” and 0 means ‘FALSE”). Unless otherwise stated, these data are all
extracted from the Entity State PDU:

L

$Revision: 0.3 $ March 1998

DIS_MON(1)

r-
COlUltlIl Meaning--_--

Entity
Frc Entities Force ID. This information

comes from the Force ID Field of the
Entity State PDU. Valid Force IDS are:
0 = Other
1 = Friendly
2=Foe
3 = Neutral

ID This is the Entity ID Field portion
of the PDU’s Entity Identifier Record.

Tvpe This column reports the name of the
entity type. The entity type a numeric
value defined in the Entity ‘Qpe Record
(of the Entity State PDU). The name seen
in this column is the text name associated
with that numeric entity type ID. The
text name comes from the V/L Data Manager
initialization file’s “DIS_ENTITIES_FILE”
record. (See vls_db_init(5)).

KILL
Mobil Book Reports if entity is mobility killed.
FireP Book Reports if entity is fire power killed.

Damage
Slight Book Reports if entity is slightly damaged.
Modrt Bool: Reports if entity is moderately damaged.
Dstryd Book Reports if entity is destroyed.

Smoke
Plm Bool: Smoke plume is rising from the entity
Eng Book Entity is emitting engine smoke
PhnEng Book Entity is emitting engine smoke

and smoke plume is rising from the entity
Times This field displays the number of times that
Hit dis_mon saw the entity ‘hit” by a munition.

This is a derived number an does not appear
in the Entity State PDU.

DIS_MON(1)

Following the entity appearance rollup report, a summary is provided for friendly and foe kills (Mobility
MKilled, Fire Power F’Killed, Mobility and Fire Power MEKilled, and completely destroyed (or Catas-
trophic) (KKilled).

Naturally, when run If run by itself, dis_mon will not be able to provide damage state (look-up table)
results since it will not be receiving queries from the vlserver.

OPTIONS
-d DZS_mgr_host The AEU DIS Manager is running on the computer whose IP address/name is
DIS mgr_host.
rum&g.

By default dis_mon looks for the ARL DIS Manager to on to the same host on which it is

-e exercise-ID 7”hi.s tells dis_mon to monitor the DIS exercise whose exercise identification number is
exercise. By default dis_mon monitors exercise number 1.

$Revision: 0.3 $ March 1998 3

.

DIS_MON(1) DIS_MON(1)

-F [big 1 little] The -F options forces big (or little) endian conversion of the incoming binary DIS tr&c.
Normally this option is unnecessary since dis_mon will auto-detect whether it is running on a big endian
(MIPS (SGI), RISC etc..) or little (Intel, DEC Alpha, etc) computer architecture. The byte order of DIS
traffic is supposed to be network byte ordered (big endian). However, if another DIS host is publishing
PDUs in the incorrect (little endian) format, then this option may be used to interpret the incorrectly broad-
cast data in a meaningful way.

-D Dport Dport is the port number used by the ARL DIS manager (which is running on DIS_mgr_host
host computer. By default the ARL DIS manager uses port 4978.

.
-v Vport This option tells dismon to connect to the vlserver on TCP/IP port number Vport. dis_mon
makes this connection in order to find out what shared memory identification is being used for vlserver to
dis_mon communication. This is the same port the vlserver uses to communicate with all its clients. By
default Vport is 4976.

-s The -s option runs the DIS Monitor in stand alone mode (not communicating with the vlserver >.

FILES
Jroleup.out provides Damage state (as reported by the DIS entities).
Jroleup.det Lists of Detonations events and the entities involved.
$VLS_HOME/DataMt/v~s_db_init.ini
vls_db_init.ini is the initialization file for the DIS Monitor. (This is the same initialization file needed by
the data manager (db) API layer of the DIS Lethality server). The environmental variable VLS_HOME
must be set to the root directory of the DIS Lethality server.

SEE ALSO
Other DIS Lethality server components:

dis_mgr(l), vlserver(l), vls_db_init(5)

AUTHOR
Geoff Sauerbom <geofi@url.mib , US Amy Research Lab. 1997,1998.

.

$Revision: 0.3 $ March 1998 4

DIS_MGR(1) DIS_MGR(1)

NAME
dis_mgr - run the ARL DIS Manager (server)

SYNOPSIS
dis_mgr [-v] [-B bridge-host] [-c num_clients] [-n network-interface] [-r recv -s send] [-MP port] [-BP
port] [-ml [-g groupname] [-t time] [-SiteIDMask mask-file] [-H host-id] [-S site-id] [-V version] [-X exer-
cise] [-x ONIOFF] [-F pdu_type] [-PI [-1 filename] [-ap] [-overl-overwrite] [-il-i&incoming] [-ol-outloutgo-
@I 1-N i-W I-4 WI [-abl WI

DESCRJPTION
This application is part of a suite of utilities and libraries collectively called the DIS Manger. This particu-
lar program is also called the DIS manager (hut it is not to be confused with the collective suite).

This program monitors DIS (Distributed Interactive Simulation) Protocol Data Units (PDU) on a UDP
(User Datagram Protocol) network and transmits the data to clients applications listening on a TCP/IP net-
work connection. Client applications use local library calls (supplied as part of the ARL DIS Manager
suite) to receive these PDUs as an internal (C language) data structure representation of these PDUs. Pro-
viding PDUs this way in a native language data structure makes it easier for application programs to manip-
ulated and use the PDU data.

The DIS Manager server (dis_mgr or Dis_Mgr) has the following command line options:

-v verbose mode. Incoming UDP and outgoing TCPAP traffic and other information is reported.
-P print a list of all PDU types.
-B bridge-host where bridge-host is the name of the machine running another instance of Dis_Mgr to be
bridged. Bridge mode uses the intemet tunneling wherein one may simulate a local @IS UDP) network
connection across a lohg distance network (like the intemet). The dis_mgr is run on both computers (See
options -MP and
-BP).

-c num_clients where num_clients is the maximum number of clients the dis_mgr will support (the default
is 8).
-n network_interface - where network-interface is the name of the ethernet interface (e.g., le0, ec0, 100
{for loopback}). As a default, the Dis_Mgr will attempt to determine this (via the internal function call
get_ethemet_interface()). Use this option to bypass the default.

Port information:

-r recv Where recv is a port number for receiving PDUs @IS traffic) on the UDP network (default is port
3000).
-s send Where send is a port number for sending PDUs on the UDP network (default is port 2099).
-MP port Where port is the port number for internal DIS_Mgr and Client TCPLTP communication. By
default this is port number 4978.
-BP port Where port is the port number for DIS_Mgr to remote site DIS_Mgr bridge (intemet tunneling)
connections.

Multicast information: If you wish to avoid the intemet tunneling method to facilitate long distance net-
working you may use multicast if your network supports multicast. A network administrator will have to
do additional configuring to prepare the multicast group.

-m Use multicast communication mode.
-g groupname Set the multicast group to groupname.
-t time time to live for multicast.

Specific to DIS:

$Revision: 3.6 $ 27 Jan 1998 1

DIS_MGR(1) DIS_MGR(1)

DIS site ID masking:

-SiteIDMask mask-file Where mask-file is the name of a file with list of valid site IDS. The file
is expected to be a list of integers. the number of integers in this file is between 0 and
MAX_SITF_ID. Where MAX_SITE_ID is an internally defined integer (whose default value is
FD_SETSIZE, which is normally equal to the maximum number of open files supported by the
operating system). Use this option to list valid DIS application “sites”. The “site” is a number
placed in the DIS PDU header as part of the DIS standard.

DIS PDU header information:

. As a service to client applications the DIS Manager pre-fills certain header fields in PDU the
header. This is done at the time that client applications request a new PDU. These fields are the
site, host, and exercise field. In a DIS exercise these field collectively identify the host computer
from which PDUs originated. The Dis_Mgr determines the values for these fields via environmen-
tal variables or the following command line switches:

-H host-id Specifies that host-id will be the DIS host ID number (the host field in the PDU
header). This overides the environmental variable DIS_HOST_ID and the default internal value
used by the DIS manager.

-S site id Specifies the DIS site ID number (in the site field of the PDU header record). This
overid; the environmental variable DIS_SITE_ID and the default internal value used by the DIS
manager (a defmed constant SITE_ID_ARERDEEN).

-X exercise Specifies the DIS exercise ID (which will appear in the exercise field of the PDU
header record). This overides the environmental variable DIS_EXERCISE_ID and the default
internal value of 1 used by the DIS manager.

-V version Where version is one of 2, 3, or 4 (for DIS versions 2.0.2, 2.0.3, and 2.0.4 respec-
tively). This changes the default DIS protocol version number to be associated with out going
PDUs and overides the default which was set in the DIS Manager at compile time. Note: that the
internal structure of PDUs will not be changed to match a particular DIS protocol version. This
option merely changes the value placed in the “version” field of the PDU header. To change the
PDU format to conform to a different DIS version you must edit H/protocol_ver.h and define
either DIS2_O-2, DIS2_O-3, or DIS2_O-4. Following this, recompile the DIS Manager and all its
utilities. (See the recompilation script $(MGR}/compile.sh).

PDU filtering:

-x ONIOFF If -x if followed by ON, then all PDUs which do not match the DIS_EXERCISE_ID
will be filtered out of the stream and not passed on to client applications. If -x OFF’ is used, then
any PDUs seen will be passed to clients (so long as the clients have requested that type of PDU).
Client applications have the option to request that all or only certain types of PDUs get sent to
them by the dis_mgr. This is done via the dis_register_pdu () API call.

LOGGZlVG

The DZS Manager can create binary jiles containing a log of the PDU trafic. The following options apply
to DZS trafic logging:

-1 filename - tum logging on. Use filename to hold the record of PDUs.
-ap - appends logged PDUs to the log file.
-overl-overwrite - overwrites the log file.

$Revision: 3.6 $ 27 Jan 1998 2

DIS_MGR(1) DIS_MGR(1)

-iI-inl-incoming Logs incoming PDUs only. (PDUs coming into the Dis_Mgr via the DIS UDP
network).
-o]-outj-outgoing Logs outgoing PDUs only. (These are PDUs sent by clients to the dis_mgr).
-h Prepends header to each logged PDU. (This is the default). The header information is needed
for the DIS Manager utility playback to work properly. (Playback is used to play back PDUs
from a recorded exercise).
-hn Logs PDUs with no header information.
-a Logs in ascii format.
-b Logs in binary format. (This is the default).
-ab Logs in ascii-binary format,

SEE ALSO
“Distributed Interactive Simulation @IS) Network Manager”,Dec 1994, ARL-TR-780, Ken Smith.
Other DIS Manager utilities. playback(l), client(l), btoa(l)/btoab(l). Look in $(MGR}/doc for man
pages to these applications.

FILES
The collective DIS Manager is in a file system starting from its own “home” directory. This directory may
be located anywhere but, naturally, should be accessable by users who are building client applications. (In
order for them to link the manager’s object libraries with their application). In the list of files below we use
“${MGR)” to represent the DIS Manager’s “home” directory . From this root, the subdirectories hold the
following files:

$(MGR}/src/H - C header “include” tiles.
${MGR)/srcMGR - source code for the dis_mgr.
$ (MGR }/src/CLlFNT - source code for an example client application.
$ (MGR }/src/CLIBlWX - source code for a Motif X client (unsupported).
$ (MGR}/src/PLAYBACK - source code for logged exercise playback utility.
$ {MGR}/src/UTIL - source code for other utilities (btoa, btoab).
$(MGR}/src/LIB - library source code (for clients and the dis_mgr).
$ (MGR }/lib - object code libraries.
$mGR}/bin - compiled executables.
$ (MGR}/doc - some documentation.
$(MGR}/compile.sh - shell program to compile everything.
$(MGR}/scrub.sh - shell program to remove compiled objects and executables, etc..

KJTEOR
Original Author: Ken Smith, US Army Research Lab. 1994,1995,1996. with additional help from others:
Holly A. Ingham, <hollyo@arZ.mil> and Geoff Sauerborn <geofi@arZ.mil> Mark Thomas
<murkt@arl.miZ>. James Bowen made an early port to the PC and wrote the original PLAYBACK. Geoff
Sauerbom is the most recent maintainer of this software.

$Revision: 3.6 $ 27 Jan 1998 3

NAME
(Matrix Single precision floating point routines)

mat_mult, mat-pm, mat_fpm, mat_fread, mat_fwrite, mat-build-psi, mat-build-phi, mat_build_theta,
mat_build_ident, mat_build_rot3, mat-distance, mat_distance_xy, mat_build_DISEntity2World,
mat_build_DISWorld2Entity, mat_build_DISEntity2World3x3, mat_build_DISWorld2Emity3x3

(Matrix Double precision floating point routines)
I -

mat_dmult, mat_dpm, mat_fdpm, mat_dfread, mat&v&e, mat_dbuild_psi, mat_dbuild_phi,
mat_dbuild_theta, mat_dbuild_ident, mat_dbuild_rot3, mat_ddistance, mat_ddistance_xy, mat_dbuild_DIS-
Entity2World, mat_dbuild_DISWorld2Entity, mat_dbuild_DISEntity2World3x3, mat_dbuild_DIS-
World2Entity3x3, mat_calcDISPsiWrK4xis

SYNOPSIS
#include “matrx.h”

void mat_mult(float *de&, float *ml , float *m2, int rowsl,int colsl, int rows2);
void matgm(float *m&t rowsjnt ~01s); /* PRINT A MATRIX */
void mat_fpm(FILE *fp, float *m,int rows,hrt ~01s); /* PRINT A MATRIX to 5le */
int mat_fread(FILE *fp, float *m,int rowgint ~01s); /* READ A MATRIX from a file */
void mat_fwrite(F’ILE *fp,float *m,int rows&t ~01s); P” WRITE A MATRIX to file */
void mat_buildgsi(float*psimat, float psi); r* rotate clockwise about the z axis by psi radians */
void mat_buildghi(float *phimat, float phi); /* rotate clockwise about the y axis by phi radians */
void mat-build theta(float *thetamat, float theta);/lr rotate clockwise about the x axis by theta radians */
void mat_buildIident(float *ident, int n);r* make ident an NxN identity matrix */
float *mat_build_rot3(float *mat, double psi, double theta, double phi);
double mat_distance(float *pntl , float *p&2); p distance in 3 space*/
double mat_distance_xy(5oat *pntl , float *pnt2); r* ignore Z Y

float *mat_build_DISEntity2World(float *mat,douhle psi,double theta,double phi);
float *mat_build_DISWorld2Entity(float *mat,double psi,double theta,double phi);
5oat *mat_build_DISEntity2World3x3(float *mat,double psi,double the&double phi);
float *mat_build_DISWorhUEntity3x3(5oat *mat,double psi,double theta,double phi);

void mat_dmult(double *de& double *ml , double *m2, int rowsl,int colsl, int rows2);
void mat_dpm(double *m,int rows,int ~01s); ph PRINT A MATRIX */
void mat_fdpm(PILE *fp, double *m,int rows,& ~01s); P PRINT A MATRIX to 5le */
int mat_di&ad(FIL.E *fp, double *m,int rows,int ~01s); P” READ A MATRIX from a file */
void mat_dfwrite@ILE *fp,double *m&t rows,int ~01s); /* WRITE A MATRIX to a mat */
void mat_dbu5dgsi(double*psimat, double psi); /* rotate clockwise about the z axis by psi radians */
void mat_dbuildghi(double *phimat, double phi); /* rotate clockwise about the y axis by phi radians Y
void mat_dbuild theta(double *thetamat, double theta);/* rotate clockwise about the x axis by theta radians */
void mat_dbuildident(double *ident, int n)p make ident an NxN identity matrix */
double *mat_dbGld_rot3(double *mat, double psi, double theta, double phi);
double mat_ddistance(double *pntl , double *pm2); r” ignore Z */
double mat_ddistance_xy(double *pntl , double *pnt2); /* ignore Z */

double *mat_dbuild_DISEntity2World(double *mat,double p&double theta,double phi);
double *mat_dbuild_DISWorld2Entity(double *matdouble psi,double theta,double phi);
double *mat_dhuild_DISEntity2World3x3(double *mat,double psi,double theta,double phi);
double *mat_dbuild_DISWorld2Entity3x3(double *mat,double psi,double theta,double phi);

_ M447-=(3)

double mat_calcDISPsiWrtXAxis(double x, double y); /” talc psi in Entity word. sys Y

DESCRIPTION
This library provides some general matrix manipulation functions. It is small and simple.

All library functions treat matrices as a continuous block of memory (that is in a single array). Matrix ele-
ments are stored ((R)*(NCOLS) + (C)) elements from the matrix base address. Where ‘NCOLS” are the
total number of columns in the matrix, R and C are matrix number of rows and columns of interest respec-
tively. (Note: with the exception of NCOLS, we start counting at 0. Therefore the very first row and first
column are indexed as the 0% row and 0% column.) For example, let M be the 3 row by 4 column matrix:

1 2 3 4
5 6 7 8
9 10 11 12

Then the following C language statments are true:

M[((O)*(4) + (0)) I-1
ML ((l)*(4) + (2)) l-=7
M[((l)*(4) + (3)) I-8
MI W*(O) + (2)) I-9

The convenience macro MAT_INDX is provided for indexing matrix elements.

usage: MAT_INDX(row, col, NCOLS)

For example, using matrix M above the following C language statments are true:

M[MAT_INDX(O, 0,4)]==l
M[MAT_INDX(l, 2,4) I=7
M[MAT_INDX(l, 3,4) I-8
M[MAT_INDX(2,2,4) l-1 1

A second convenience macro MAT_MTRX is also provided.

usage: MAT_MTRX(matrix, row, col, NCOLS)

Using matrix M above and the MAT_MTRX macro the following C language statments are true:

MAT_MTRX(M, 0, 0,4)3-l
MAT_MTRX(M, 1,2,4)=7
MAT_MTRX(M, 1,3,4)=8
MAT_MTRX(M, 2,2,4)-l 1

There are a few functions which are not general at all but specifically apply to the Distributed Interactive
Simulation standard (DIS). These are conversion routines used to translate points to and from the DIS
world coordinate system and the DIS Entity coordinate system. (These are functions with the capitalized
letters “DZS” found in their.name).

The DIS standard specifies that the following sequence of rotations occur to transform from the DIS World

$Revision: 0.10 $ Jan 1998 2

mm(s) MATRX(3)

to the DIS Entity coordinate systems. First rotated about the Z axis (by psi radians). This produces a trans-
formed X and Y axis (called X’ and Y’). The next rotation occurs about the transformed Y axis (Y’) by
theta radians (producing a new X axis again [X”]). The last rotation is by phi radians about the X” axis.
These three rotation angles (psi, theta, phi) are call the Euler angles. Positive angles of rotation about an
axis are clockwise about the axis (“clockwise” as viewed from axis origin out towards the positive path of
the axis). The functions mat_build_DISWorld2Entity() and mat_build_DISEntity2WorldO and their
double precision counterparts may be used to create matrices which may be used to accomplish these DIS
transformations. The transfoxmation matrix produced would then be used to multiply a point (or set of
points) to translate that point(s) to the other DIS coordinate system.

For instance, the following code segment will use the Euler angles psi, theta, phi to build the transformation
matrix (XMat). This matrix wil then be used to transform the matrix MEntity (which contains 2 points in
the first two rows) to the DIS world coordinate system:

#include <math.h>
#include “matrx. h"

double
s t a t i c
double

double MWorld[8];/* will hold the transformed points */

xMatC161; /* wi l l hold t ransformat ion matr ix a 4x4 */
double psi=M_PI , theta=M_PI , phi=M_PI ; /* maded-up angles */
MEntity = { O., O., O., 1. /* 1st pt. (O,O,O) */

1 . I 2., 3., 1. /* 2nd pt. (1~2~3) */
];

if (NULL != mat_dbuild_DISEntity2World(Xmat, psi, theta, phi)) C

mat_dmult(MWorld, MEntity, Xmat, 2, 4, 4);
/*
* MWorld now holds the transformed points
*

*/
3;

The reason for the fourth matrix column is because these functions transform homogeneous coordinates
whose usefulness is not covered here but is found elsewhere FOGERS]. Therefore matrices used in these
functions must have a 4th column (even if not used) as a place holder. Any number will suffice as a place
holder, but the use of the number one (1) is preferred. There are alternate functions mat_build_DISEn-
tity2World3x30, mat_build_DISWorld2Entity3x30 and their double precision counter parts
mat_dbuild_DISEntity2World3x3() and mat_dbuild_DISWorldntity3x30. These functions do not
use the heterogeneous fourth dimension. Therefore only a 3 dimensional point (matrix with exactly three
(3) columns) will be returned by these functions.

Note that rotation matrices produced by mat_buildgsiO, mat_build_thetaO, and mat_buildghi() and
their double precision counterpart functions apply to a single rotation about the ordinal (untransformed)
coordinate axis. This differs from the DIS standard method for translating between the DIS Entity (some-
times called the “missile coordinate system”) and the DIS World coordinate systems (sometimes called the
“earth centered earth fied, or the geocentn’c Cartesian coordinate system”).

One important final note before introducing the functions. The function matTbuild_rotO and its double
precision counter part mat dbuild_rot() have nothing to do with the DIS coordmate rotations. These func-
tions build a rotational ma& based on the assumption that the ordinal axis (the (original X, Y, and Z axis)
remainfived and are never transformed (into X’, Y’, Z’, and X”, Y”, Z”). (See the IEEE standard 1278.1).
Therefore never use these functions in combination to build a DIS world to entity coordinate transform&on

$Revision: 0.10 $ Jan 1998 3

* void mat_fdpm(FJLE *fp, double *m,int rows,int ~01s)
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Print a double precision matrix to the file pointed by
the file pointer fp. m is a matrix with ‘kows” rows
and “~01s” columns.

The purpose is to present the matrix in a fairly human
readable format.

BUGS:
This is Just for a ‘popular range’ of numbers.
(It assumes 6 decimal places an no more than 19 digits).

SEE ALSO:
mat_fdwrite()

MAJRW3) MATRX(3)

matrix. Use the DIS specificfunctions instead (the ones with DIS in theirjimction name).

Further details on library functions:

/*
- mat_dmult()
*
* void mat_dmult(double *dest,double *ml ,double *m2,int rows1 ,int colsl ,int rows2)
*
* Matrix multiply [dest] = [ml][m2]
*
* Multiply matrix “ml” by “m2” and store the results in “dest”.
*

* ml i s a rowsl , by cols l matr ix
* m2 is a rows2, by cols l matr ix
* des t i s a rowsl , by cols l matr ix
*
* for example: d e s t ml m2
* 11 2 3 01 = 11 2 3 01 I1 0 0 01
* * 10 1 0 01
* IO 0 1 01
* 10 0 0 11
* dest is 1 row by 4 columns
* ml is 1 row by 4 columns
* m2 is 4 rows by 4 columns

*
* Jn this case the proper call to mat_dmult is:
*

* mat_dmult(dest, ml, m2, 1,4,4);
*
*I

- mat_fdpm(>
*

$Revision: 0.10 $ Jan 1998 4

MA=(3) MATRX(3)

I*
_ mat_dpm()
*
* void mat_dpm(double *m,int rows,int ~01s)
*

.

* Print a double precision matrix to the standard output
* the file pointer fp. m is a matrix with “rows” rows
* and “~01s” columns.
* The purpose is to present the matrix in a fairly human
* readable format.
*

. * BUGS:
* This is just for a ‘popular range’ of numbers.
* (It assumes 6 decimal places an no more than 19 digits).
*
* SEE ALSO:
* mat_fdpm(), mat_fdwrite()
*
“I

* mat_dfwrite()
*
* void mat_dfwrite(FfLE *fp,double *m,int rows,int ~01s) .
*

* Write a matrix to a file showing more precision
* but in a less human readable format. The purpose
* is for storing matrix contents (which can then be read
* back (by mat_dfread()).
*
* BUGS
*
*
*
*
*
*
*
*
*

. *
*
*
*
*

.

Limited to about 21 digits of precision, but you can
always change the source code if you have say a 64 bit
architecture (with 128 bit double precision floating point
numbers).

Numbers are converted from their native binary
format to scientific notation numbers

Disadvantage: Therefore this may cause common digital to
real numbers conversion ambiguities.

Advantage: However this allows portability of your data
between systems.

SEE ALSO:
mat_dfread(), mat_fdpm()

_ mat_dfread()
*
* int mat_dfread(FILE *fp, double *m,int rows,int ~01s)
*

$Revision: 0.10 $ Jan 1998 5

* Read a matrix from file, storing it internally in the
* (matrix) double precision array “m”.
*
* Stored matrix values are ASCII numbers.
*
* Once a matrix reading is started (from the
* file), only the matrix elements are expected (i.e. NO
* comments are allowed in the file (unless they proceed
* or come before the matrix).
*
* SEE ALSO:
* mat_dfwrite()
*/

.

I*
_ mat_dbuild_psi()
*
* void mat_dbuild_psi(double*psimat,double psi)

psimat - the 4x4 matrix
psi - the rotation angle psi (about the Z axis in radians)

Build a Psi rotation matrix of doubles. (Psi, rotation about the Z
axis in radians) and return it in psimat.

RETURNS
The transformation matrx is returned in the passed array psimat.
Note that a 4x4 matrix is returned therefore
“psimat” must be an array of at least 16 doubles.
Furthermore if psimat is then used in a multiplication,’
“4” columns must be specified as an argument to mat_dmult().

$Revision: 0.10 $

/*
L mat_dbuild_theta()
*
* void mat_dbuild_theta(double*thetamat,double theta)
*
*
*
*
*
*
*
*
*
*
*
h

*

*

*

thetamat - the 4x4 matrix
theta - the rotation angle theta (about the Y axis in radians)

Build a theta rotation matrix of doubles. (theta, rotation about the Y
axis in radians) and return it in thetamat.

RETURNS

The transformation ma&x is returned in the passed array thetamat.
Note that a 4x4 matrix is returned therefore
“thetamat” must be an array of at least 16 doubles.
Furthermore if thetamat is then used in a multiplication,
“4” columns must be specified as an argument to mat_dmult().

Jan 1998 6

MA77=(3) MATRX(3)

/*
” mat_dbuild_phi()
*
* void mat_dbuild_phi(double*phimat,double phi)
*
*
*
*
*
*
*
*
*
*
*
*
*
*

phimat - the 4x4 matrix
phi - the rotation angle phi (about the X axis in radians)

Build a phi rotation matrix of doubles. (phi, rotation about the X
axis in radians) and return it in phimat.

RETURNS
The transformation matrx is returned in the passed array phimat.
Note that a 4x4 matrix is returned therefore
“phimat” must be an array of at least 16 doubles.
Furthermore if phimat is then used in a multiplication,
“4” columns must be specified as an argument to mat_dmult().

_ mat_dbuild_ident()
*
* void mat_dbuild_ident(double *ident, int N)
*
* Make ident an NxN identity matrix
* For example if N equals 3 then
*
* 1 0 0
* 0 1 0
* 0 0 1
*
* will be returned in “ident”. Naturally
* ident must be an array with at least N*N doubles.
*
* RETURNS
*
* An NxN identity matrix in “ident”
*
*I

I*
” mat_ddistance_xy()

double mat_ddistance_xy(double *pntl , double *pm2)

pntl and pnt2 are arrays containing the X and Y coordinates
for each of the points in question. mat_ddistance_xy() returns
the distance (root sum square) between these points.
(Z if present is ignored)

$Revision: 0.10 $ Jan 1998 7

hQ=RX(3) MATRX(3)

*

* RETURNS
*

* The distance between two points in the XY plane.
*
*I

_ mat_ddistance()
*
* double mat_ddistance(double *pntl , double *pnt2)
*
* pntl and pnt2 are arrays containing the X, Y, and Z coordinates
* for each of the points in question. mat_ddistance() returns
* the distance (root sum square) between these points.
*
* RETURNS
*
* The distance between two points in 3 space.
*
“/

I mat_dbuild_rot3()
*
* double *mat_dbuild_rot3(double *mat, double psi, double theta, double phi)
*
* Build the 3 angle rotation matrix (rotating
* psi about the Z axis,
* theta about the Y’ axis
* phi about the X” axis)
* the rotation matrix is returned in the 4x4 matrix argument
* “mat” (which is a double precision floating point
* array of at least 16 elements).
*
* NOTE: The ordinal axis are not themselves transformed
* between rotations. Therefore this function may
* NOT be used to create transformation matrices for
* DIS Euler angles.
*
* RETURNS
*
* mat or NULL if an error.
*
* SEE ALSO:
*
* mat_dbuild_DISWorld2Entity(), mat_dbuild_DISEntity2World()
*
*I

I*___-______-____________float functions_____________________*/
/*_________________________floatfunctions_____________________*/
/*________________________floatfunctions_____________________*/

$Revision: 0.10 $ Jan 1998 8

MA7RW3) MA=TRX(3)

.

I .

/*
_ mat_mult()
*
* void mat_mult(float *dest,float *ml,float *m2,int rowsljnt colsl,int rows2)
*
* Matrix multiply [dest] = [ml][m2]
*
* Multiply matrix “ml ” by ‘kn2” and store the results in “dest”.
*
* ml is a rowsl, by ~01.51 mat r ix
* m2 is a rows2, by colsl matrix
* dest is a rowsl, by colsl matrix
*
* for
*
*
*
*
*
*
*

*

example : dest ml m2
11 2 3 01 = 112301 I1 0 0 01

* 10 1 0 01
10 0 1 01
10 0 0 11

d e s t i s 1 row by 4 columns
ml i s 1 row by 4 columns
m2 i s 4 rows by 4 columns

* In this case the proper call to mat_mult is:
*

* mat_mult(dest, ml, m2, 1,4,4);

*

“!

I*
_ maLf$mO
*
* void mat_fpm(FILE *fp, float *m,int rows,int ~01s)
*
* Print a single precision matrix to the file pointed by
* the file pointer fp. m is a matrix with ‘Tows” rows
* and “~01s” columns.
* The purpose is to present the matrix in a fairly human
* readable format.
*
* BUGS:
* This is Just for a ‘popular range’ of numbers.
* (It assumes 6 decimal places an no more than 19 digits).
*
* SEE ALSO:
* mat_fwrite()
*
*I

I*
"mat_pm(>
i

$Revision: 0.10 $ Jan 1998 9

* void mat_pm(float *m,int rows,int ~01s)
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Print a single precision matrix to the standard output
the file pointer fp. m is a matrix with ‘kows” rows
and “~01s” columns.

The purpose is to present the matrix in a fairly human
readable format.

BUGS:
This is just for a ‘popular range’ of numbers.
(It assumes 6 decimal places an no more than 19 digits).

SEE ALSO:
mat_fpm(), mat_fwrite()

MATRx(3) MATRX(3)

I*
_ mat_fwrite()
*
* void mat_fwrite(FILE *fp,float *m,int rows,int ~01s)
*
* Write a matrix to a file showing more precision
* but in a less human readable format. The purpose
* is for storing matrix contents (which can then be read
* back (by mat_fread()).
*
* BUGS
*
*
*
*
*
*
*
*
*
*
*
*

Limited to about 21 digits of precision, but you can
always change the source code if you have, say, a 64 bit
architecture (with 64 bit single precision floating point
numbers).

Numbers are converted from their native binary
format to scientific notation numbers

Disadvantage: Therefore this may cause common digital to
real numbers conversion ambiguities.

Advantage: However this allows portability of your data
between systems.

* SEE ALSO:
* mat_fread(), mat_fpm(>
“I

_ mat_fread()
*
* int mat_fiead(FILE *fp, float *m,int rows,i.nt ~01s)
*

* Read a matrix from file, storing it internally in the
* (matrix) single precision atray “m”.
*

$Revision: 0.10 $ Jan 1998 10

* Stored matrix values are ASCII numbers.
*
* Once a matrix reading is started (from the
* file), only the matrix elements are expected (i.e. NO
* comments are allowed in the file (unless they proceed
* or come before the matrix).
*
* SEE ALSO:

. * mat_fwrite()
*/

I”
- mat_build_psi()
*
* void mat_build_psi(float*psimat,float psi)
*
* psimat - the 4x4 matrix
* psi - the rotation angle psi (about the Z axis in radians)
*
* Build a Psi rotation matrix of floats. (psi, rotation about the Z
* axis in radians) and return it in psimat.
*
* RETUTWS
* The transformation matrx is returned in the passed array psimat.
* Note that a 4x4 matrix is returned therefore
* “psimat” must be an array of at least 16 floats.
* Furthermore if psimat is then used in a multiplication,
* “4” columns must be specified as an argument to mat_dmult().
*
*I

I*
- mat_build_theta()

: void mat_build_theta(float*thetamat,float theta)
*
*
*
*
*

. *
*
*

. *
*
*
*
*
*
*

thetamat - the 4x4 matrix
theta - the rotation angle theta (about the Y axis in radians)

Build a theta rotation matrix of floats. (theta, rotation about the Y
axis in radians) and return it in thetamat.

RETURNS

The transformation matrx is returned in the passed array thetamat.
Note that a 4x4 mati is returned therefore
“thetamat” must be an array of at least 16 floats.
Furthermore if thetamat is then used in a multiplication,
“4” columns must be specified as an argument to mat_dmult().

$Revision: 0.10 $ Jan 1998 11

M-47J=(3) MATRX(3)

/*
I mat-build-phi0
*
* void mat_build_phi(float*phimat,float phi)
*
* phimat - the 4x4 matrix
* phi - the rotation angle phi (about the X axis in radians)
*
* Build a phi rotation matrix of floats. (phi, rotation about the X
* axis in radians) and return it in phimat.
*
* RETURNS
* The transformation matrx is returned in the passed array phimat.
* Note that a 4x4 man-ix is returned therefore
* “phimat” must be an array of at least 16 floats.
* Furthermore if phimat is then used in a multiplication,
* “4” columns must be specified as an argument to mat_dmult().
*

- mat_build_ident()
*
* void mat_build_ident(float *ident, int N)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*I

/*

Make ident an NxN identity matrix
For example if N equals 3 then

1 0 0
0 1 0
0 0 1

will be returned in ‘ident”. Naturally
ident must be an array with at least N*N floats.

RETURNS

An NxN identity matrix in “ident”

_ mat_distance_xy()
*
* double mat_distance_xy(float *pntl , float *pm2)
*
* pntl and pnt2 are single precision floating point arrays
* containing the X and Y coordinates for each of the points
* in question.
* mat_distance_xy() returns the distance (root sum square)
* between these points. (Z if present is ignored)
*
* RETURNS

$Revision: 0.10 $ Jan 1998 12

.

.

MATRX(3) MATRX(3)

*

* The distance between two points in the XY plane.
*
“I

- mat_distance()
*
* double mat_distance(float *pm1 , float *pnt2)

pntl and pnt2 are single precision floating point arrays
containing the X, Y, & Z coordinates for each of the points
in question.
mat_distance_xy() returns the distance (root sum square)
between these points.

* RETURNS
*
* The distance between two points in 3 space.
*
*/

_ mat_build_rot3()
*
* float *mat_build_rot3(float *mat, double psi, double theta, double phi)
*
* Build the 3 angle rotation matrix (rotating
* psi about the Z axis,
* theta about the Y’ axis .
* phi about the X” axis)
* the rotation matrix is returned in the 4x4 matrix argument
* “mat” (which is a floating point array of 16 elements).
*
* NOTE: The ordinal axis are not themselves transformed
* between rotations. Therefore this function may
* NOT be used to create transformation matrices for
* DIS Euler angles.
*
* RETURNS
*
* mat or NULL if an error.
*
* SEE ALSO:
*
*
*
*/

mat_build_DISWorld2Entity(), mat_build_DISEntity2World()

I*____________DIS Tra&omation functions ____________ _______*/
/*____________DIS Tra&ol-mation functions ______ _____________*/
/*____________ DIS Tra&omation functions _--- _____________ __*/

$Revision: 0.10 $ Jan 1998 13

MAI-RX(3) MAlRX(3)

* mat_dbuild_DISEntity2World()
*
* double *mat_dbuild_DISEntity2World(double *matl6,double psi,double theta, double phi)
*
* mat16 points to an array of 16 doubles (which represents a 4x4 homogeneous
* matrix to the “mtrx” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation) .
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

$Revision: 0.10 $

Euler angles as described in the DIS standard.
(they represent the successive rotation about the Z, Y’, and X”
axis in order to transform from the DIS World Coordinate System
to the DIS Entity Coordinate system).

Entity Coordinate system:

-Z (Entity's coordinate system used in IEEE 1278.

I Note that "up" is -Z

I
I
I'top'
I
I_

../_/I.. entity
/ 1-I ====== 'front'

I I I _______________>

I - / - I / X

/ I
/ I

I
/ I

/ V

/ +Z
I /

Y Geoff Sauerborn

1)

DIS World coordinate system

h +z
I
I
I

(used in IEEE 1278.1)
The origin at the center of the earth
+Z goes through the north pole.
+X goes through prime meridian at the equator *

I
I

the earth
########

##########
##########_________________>

##/##### X
/#####

/ I
I

: I
/ V

.

Jan 1998 14

MAlRX(3) MATRX(3)

* /
* I/
* Y

*

*

-z

Geoff Sauerborn

* NOTE? these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*
* Returns mat16 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

_ mat_build_DISEnlity2World()
*
*float *mat_build_DISEntity2World(float *matl6,double psi,double theta, double phi)
*
* mat1 6 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the “mtrx” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y’, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*
* Returns mat16 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

- mat_build_DISWorld2Entity()
*
*float *mat_build_DISWorld2Entity(float *matl6,double psi,double theta, double phi)

$Revision: 0.10 $ Jan 1998 15

hQQRX(3) MATRX(3)

*

* mat16 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the “mtrx” library procedures).
*-
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y’, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns mat16 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

_ mat_dbuild_DIS World2Entity()

zdouble *mat_dbuild_DISWorld2Entity(double *matl6,double psi,double theta, double phi)
*
* mat16 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the “m&x” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS .standard.
* (they represent the successive rotation about the Z, Y’, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns mat16 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

” mat_dbuild_DISEntity2World3x3()

zdouble *mat_dbuild_DISEntity2World3x3(double *mat9,double psi,double theta, double phi)
*
* mat9 points to an array of 9 doubles (which represents a 3x3
* matrix to the “mtrx” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.

$Revision: 0.10 $ Jan 1998 16

Ml-RX(3) MATRX(3)

.

* (they represent the successive rotation about the Z, Y’, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*
* Returns mat9 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson @earson@arl.mil).
*

_ mat_build_DISEntity2World3x3()
*
*float *ma~_build_DISEntity2World3x3(float *ma&double psi,double theta, double phi)
*
* mat9 points to an array of 9 floats (which represents a 3x3
* matrix to the “mtrx” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y ‘, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*
* Returns mat9 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
*
*
*
*

*I

I*

However the transformation were not derived elsewhere
by others.
Special thanks to Rich Pearson (pearson@ul.mil).

_ mat_build_DISWorld2Entity3x3()

kloat *mat_build_DISWorld2Entity3x3(float *mal$double psi,double theta, double phi)
*

$Revision: 0.10 $ Jan 1998 17

MAI-RX(3) MATRX(3)

* mat9 points to an array of 9 floats (which represents a 3x3
* matrix to the “mu-x” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y’, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns mat9 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerborn. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
1

- mat_dbuild_DISWorld2Entity3x3()
*
*double *mat_dbuild_DISWorld2Entity3x3(double *mat%double psi,double theta, double phi)
*
* mat9 points to an array of 9 floats (which represents a 3x3
* matrix to the “mu-x” library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y’, and X”
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns mat9 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*
*I

/*
_ mat_calcDISPsiWrtXAxis()

$Revision: 0.10 $

double mat_calcDISPsiWrtXAxis(double x, double y)

Calculate Psi with respect to the X axis.

Using the Missile Coordinate system @IS Entity Coordinate system).
6nd Psi (the clock wise rotation about Z relative to the positive
X axis, given x,y coordinate of a point in this system.
x,y is taken to be the end point of a vector whose origin is 0,O.

Jan 1998 18

MAm(3) M ATRX(3)

* psi is the “rotation” that this vector makes relative to the X-axis.
* with its origin fixed (at 0,O).
*
* In the xy plane the DIS Entity Coordinate system looks like this:
*

* ^X
* I
* I I I I <_____ (Quadrant I)
* I
* I
* _________f_____________>
* -Y I Y
* I
* I I I I IV
* I
* -X
*

*
* returns Psi in radians.
*
* Written by Geoff Sauerbom cgeoffs@arl.mil>
*
“I

SEE ALSO
IEEE Standard 1278.1.
[ROGERS] ‘Mathematical Elements for Computer Graphics”, by David F. Rogers, J. Alan Adams., 1990,
ISBN: 0070535299

Author
Geoff Sauerbom <geo~@url.miZ> , US Army Research Lab. 1995,1996,1997. The DIS transformation
were derived elsewhere by others. Special thanks to Rich Pearson <peurson@urZ.miZ> who provided the
DIS tranformations to and from world and entity coordinates.

$Revision: 0.10 $ Jan 1998 19

MK_SHM(S) MK_SHM(3)

NAME
shmCreateSharedMem(void), shmGetID(void), shmlsAttached(void), shmCreateSharedMem(void),
shmGetID(void), shmDestroy(), shmClear_QueryPlaced(), shmClear_QueryAnswered(), shmSet_Query-
Placedo, shmSet_QueryAnswered(), shmGet_QueryPlaced(), shmGet_Query&mwered(), shmClear_Tar-
getES_PDU(), shmClear_ShooterES_PDU(), shmClear_Fire_PDU(), shmClear_Detonation_PDU(), shm-
Set_TargetES_PDU(), shmSet_ShooterES_PDU(), shmSet_Fire_PDU(), shmSet_Detonation_PDU(),
shmGet_TargetES_PDU(), shmGet_ShooterES_PDU(), shmGet_Fire_PDU(), shmGet_Detonation_PDU(),
shmSet_TargetJD(), shmSet_EventlD(), shmSet_Query’Iype(), shmSet_Query&gsType(), shmGet_Tar-
getID@ shmGet_EventID(), shmGet_QuexyTjpe(), shmGet_Query~gsTjpe(), shmSet_DisVersion(),
shmGet_DisVersion(), shmSet_VLResult(), shmSet_mfkPS(), shmSet_prob(), shmGet_VLResult(),
shmGet_mfkPS(), shmGet_prob(), shmClear_ErrorMsg(), shmGet_EtrorMsg()

SYNOPSIS
#include ",mk_shm. h”

in t shmCreateSharedMem(void) ; /* allocate shared memory block */
i n t shmGetID(void); /* return share memory ID */
Boo1 shmIsAttached(void) ; /* return TRUE iff shared memory is attched*/
/ * - - - - - - - - - - S h a r e d m e m o r y m a n i p u l a t o r s - - - - - - - - - - - - - - - - - * /
i n t
int

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

shmCreateSharedMem(void); /* called by Server */
shmGetID(void); /* called by Server and passed

* to DisMonitor via tcp socket.
*/

shmDestroy(); /* called by Server */
shmClear_QueryPlaced(); /* called by DisMonitor */
shmClear_QueryAnswered(); /* called by Server '*/
shmSet_QueryPlaced(); /* called by Server */
shmSet_QueryAnswered(); /* called by DisMonitor */
shmGet_QueryPlaced(); /* called by DisMonitor */
shmGet_QueryAnswered(); /* called by Server */
shmClear_TargetES_PDU(); /* called by DisMonitor */
shmClear_ShooterES_PDU(); /* called by DisMonitor */
shmClear_Fire_PDU(); /* called by DisMonitor */
shmClear_Detonation_PDU(); /* called by DisMonitor */
shmSet_TargetES_PDU(); /* called by Server */
shmSet_ShooterES_PDU(); /* called by Server */
shmSet_Fire_PDU(); /* called by Server */
shmSet_Detonation_PDU(); /* called by Server */

void * shmGet_TargetES_PDU(); /* called by DisMonitor */
void * shmGet_ShooterES_PDU(); /* called by DisMonitor */
void * shmGet_Fire_PDU(); /* called by DisMonitor */
void * shmGet_Detonation_PDU(); /* called by DisMonitor */
int
int
int
int
int
int

shmSet_TargetID(); /* called by Server */
shmSet_EventID(); /* called by Server */
shmSet_QueryType(); /* called by Server */
shmSet_QueryArgsType(); /* called by Server */
shmGet_TargetID(); /* called by DisMonitor */
shmGet_EventID(); /* called by DisMonitor */

-Token shmGet_QueryType(); /* called by DisMonitor */VLS_
VLS_Token shmGet_QueryArgsType(); /* called by DisMonitor */

int shmSet_DisVersion(); /* called by DisMonitor */
const char *shmGet_DisVersion();/* called by Server */

$Revision: 0.22 $ June 1998 1

MlV=M(3) MK_SHM(3)

int shmSet_VLResult(); /* called by DisMonitor */
int shmSet_mfkPS(); /* called by DisMonitor */
int shmSet_prob(); /* called by DisMonitor */
int shmGet_VLResult(); /* called by Server */
float* shmGet_mfkPS(); /* called by Server */
double shmGet_prob(); /* called by Server */

void shmClear_ErrorMsg(); /* called by Server */
const char *shmGet_ErrorMsg(); /* called by Server */
int shmSet_ErrorMsg(); /* called by DisMon */

DESCRIPTION
Make (and manipulate) Shared Memory. This is a special purpose library. It links the DIS Server portion
of the DIS Lethality Server (the ‘vlserver” application - see vlserver(1)) with the DIS monitor portion (see
dismon(1)).

The functions in this library are “user friendly” in that the shared memory creation is automated (with no
need to maintain track of the shared memory TD”s. The vlserver establishes the share memory by calling
shmCreateSharedMem(). Later, di_mon connects (as a client) to vlserver and queries vlserver for the
shared memory ID. Using this ID, clis_mon establishes a connection to the same shared memory location
and closes it’s client connection with the vlserver. (This takes place in the vls_link_connect() function
within the dis_mon source code). After this, all further communication between the vlserver and the DIS
Monitor occurs via share memory (through the functions defined in this library).

The purpose for the link between the DIS Server and the DIS Monitor is so that the server may pass vulner-
ability analysis queries on to the DIS Monitor. The DIS monitor then returns the results via the same
shared memory link. The main loop for this process proceeds by having the DIS monitor periodically
check to see if a lethality result query has been “queued” into the shared memory. If so, the DIS monitor
reads the query from shared memory, calls the appropriate VL API function (which will perform the analy-
sis) and then places the result in the shared memory. Once the DIS monitor has completed these steps it
sets a flag (via shmSet_QueryAnswered()) to inform vlserver that query has been answered and is’placed in
shared memory. The vlserver is now free to retrieve the answer (and pass it on to the client who requested
it). The following figure maps the sequence of events, and specifies when vlserver or dis_mon access the
shared memory (via these library calls). Access could be either putting data in or coping data out of the
shared memory. The sequence of events proceeds forward as one reads down the page. The line running
down the middle of the page represents the shared memory. The left side of this line shows when the
vlserver (SERVER) accesses shared memory. The right side displays access by the DIS Monitor.

Start

SERVER creates shared memory --->I
SERVER attaches self to it --->I

1 <_____ DisMonitor attaches self
I to shared memory.
, <_____ sets DIS Version

--from this point on queries and answers to those queries may occur--
##

client queries server ##
(via tcp/ip connection) ##

##

SERVER places query in
shared memory _----__> I

I

$Revision: 0.22 $ June 1998 2

MK_SHM(3) MK_SHM(3)

SERVER sets QueryPlaced __-__> I
I
I
I < ---DisMonitor Sees that
I QueryPlaced is set.
I
I <---DisMonitor Places answer
I to query in shared memory
I
I <---DisMonitor Clears
I Placed flag (QueryPlaced).
1 <---DisMonitor Sets Query
I Answered flag (QueryAnswered).
I

SERVER Sees that I
QueryAnswered is set _____> I

I
SERVER gets answer to query-> I

I
SERVER clears QueryAnswered-> I

I
##

server delivers answer ##
to client (via tcp/ip connection)##

##
##

Short explanations for tbe existing mk_shm(3) functions follow. Other functions may have to be added if
vuhrerabilities are described in amatmer different from the "MFK"metbodology orifadditional initiabza-
tionparameters are needed to complete the vulnerability analysis. Thus far most oftheparameters found in
the Entity State, Detonation, and Fire PDUs are provided by mk_shm(3) functions. Functions are
described in the following order:
shmCreateSharedMem()
shrnDestroy()
shmGetID()
shmClear_QueryPlaced()
shmClear_QueryAnswered()
shmSet_QueryPlaced()
shmSet_QueryAnswered()
shmGet_QueryPlaced()
shmGet_QueryAnswered()
shmSet_TargetES_PDU()
shmClear_TargetES_PDU()
shmGet_TargetES_PDU()
shmClear_TargetES_PDU()
shmClear_ShooterES_PDU()
shmClear_Fire_PDU()
shmClear_Detonation_PDU()
shmSet_TargetES_PDU()
shmSet_ShooterES_PDU()
shmSet_Fire_PDU()
shmSet_Detonation_PDU()
shmGet_TargetES_PDU()
shmGet_ShooterES_PDU()

$Revision: 0.22 $ June 1998 3

MK_SHM(3) MK_SHM(3)

sbmGet_Fire_PDU()
sbmGet_Detonation_PDU()
sbmSet_TargetID()
sbmSet_EventID()
sbmGet_TargetlD()
shmGet_EventJD()
shmSet_DisVersion()
shmGet_DisVersion()
sbmGet_Query’l)lpe()
slunGet__QueryA@J?ype()
shSet_QueryTYpe
sbmSet_QueryArgsType()
sbmSet_VLResult()
sbmGet_VLResult()
sbrnGet_m&PS()
sbmSet_mfkPS()
shmGet_prob()
sbmSet_prob()
sbm_zero_mem()
sbmIsAttached()
sbmClear_ErrorMsg()
sbmGet_ErrorMsg()
sbmSet_ErrorMsg()

/*
- shmCreateSharedMem()
*
* int shmCreateSharedMem(void)
*
* Establish shared memory for inter process communitcation
* between the Lethality Server and the DIS Monitor
*
* The memory must be large enought to hold
* 1. arguments to the Lethality Data Query.
* 2. answers of resulting from the Lethality Data Query.
* 3. and a few overhead bytes to keep track of when data is read
* for reading.
*
* Arguments (1.) are in the form of a set of PDUs (in
* binary string form - as seen on the UDP net). Currently the
* only arguments needed are a FirePDU, DetonationPDU, and two
* EntityStatePDUs (one for the firer and one for the target).
* If you would like to add more arguments increase NARG_TYPES and
* add to the ArgEnum list. Also, if the addtion includes
* a different type of answer from the server, then add
* that to the AnsTypes union. Any VLS_Token(s) which represent a new
* type of answer(s) is then added as a valid VLS_Token (in vls_toke.h).
* (This vlsfoken must be inserted in (enum _VLS_Token) somewhere between the
* _T_END_OF_T_QTYPE_TOKENS and _T_START_OF_T_QTYPE_TOKENS and
* coorsponding entries(s) are added in (char *VLS_TokenString[]).
*
* returns 1 on success, 0 on failure.
*

*/

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

int shmCreateSharedMem()

/*
* shmDestroy()
*
* int shmDestroy(int id);
*
* shared memory is marked for destruction after the last detached
* process detaches. An attempt is made to detatch the current
* thread from the shared memory.
*
* return 0 on faliure
* 1 on success. (if memory is marked for destruction).
*

*/
int shmDestroy(int id);

/*
_ shmGetID()
*
* int shmGetID(void)
*
* Returns
* this is
* Returns
*

*/
int shmGetID()

the shared memory id established by shmCreateShared.Mem().
the same id returned by the unix system call shmget().
-1 if no shared memory was established.

/* ________________________~____~~~___~~~____~~____~~~~~~~~~ ____ *,

/* Shared Memory data ______________________~~~~~_~~~~~~ ------ */
/* manipulator APIs ____________________~___~~~~__~~~~~ ______ *,

/* ---- _______________________~~_____~~__________~~_____~______~ */

/*
- shmClear_QueryPlaced()
*
* int shmClear_QueryPlaced(void);
*
* Clears (sets to FALSE) the QueryPlaced Boo1 in shared memory.
*
* returns 1 on sucess.
* 0 on failure (likely because shared memory not available

;

1
*/
int shmClear_QueryPlaced(void)

/*
- shmClear_QueryAnswered()
*
* int shmClear_QueryAnswered(void);
*
* Clears (sets to FALSE) the QueryAnswered Boo1 in shared memory.
*
* returns 1 on sucess.

$Revision: 0.22 $ June 1998 5

MK_SHM(3) MK_SHM(3)

* 0 on failure (likely because shared memory not available)

*/
shmClear_QueryAnswered()

/*
_ shmSet_QueryPlaced()
*
* int shmSet_QueryPlaced(void);
*'
* Sets (assigns TRUE to) the QueryPlaced Boo1 in shared memory.
*
* returns 1 on sucess.
* 0 on failure (likely because shared memory not available)
*/
int shmSet_QueryPlaced(void);

/*
- shmSet_QueryAnswered()
*
* int shmSet_QueryAnswered(void);
*
* Sets (assigns TRUE to) the QueryAnswered Boo1 in shared memory.
*
* returns 1 on sucess.
* 0 on failure (likely because shared memory not available)
*/
int shmSet_QueryAnswered(void);

/*
_ shmGet_QueryPlaced()
*
* int shmGet_QueryPlaced(void);
*
* returns 1 (TRUE) if Query data as been Placed in the shared memory.
* 0 (FALSE) if a complete query is not there yet.
* -1 on failure (likely because shared memory not available)
*/
int shmGet_QueryPlaced(void);

/*
- shmGet_QueryAnswered()
*
* int shmGet_QueryAnswered(void);
*
* This function returns the value of a boolean flag in shared memory.
* the flag is set (TRUE) by the function shmSet_QueryAnswered()
* the flag is set (FALSE) by the function shmClear_QueryAnswered().
*
* returns 1 (TRUE) if a placed Query has been answerd by the DIS Monitor
* (and this answer has been placed in shared memory).
* 0 (FALSE) if an answer is not yet there.
* -1 on failure (likely because shared memory not available)
*/

int shmGet_QueryAnswered(void);

$Revision: 0.22 $ June1998 6

MK_SHM(3)

/*

*
*
*
*
*
*
*
*
*
*
*

MK_SHM(3)

shmSet_TargetES_PDU()

int shmSet_TargetES_PDU(void* bin_arry, int len)

Copies the argument (bin_arry) into shared memory.
The argument "bin_arry" is a PDU (in binary continious string

form). "len" is its length.
This PDU is the Entity State PDU of the TARGET (the threatend entity).

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)
*/

int shmSet_TargetES_PDU(void* bin_arry, int len);

/*
- shmClear_TargetES_PDU()
*
* int shmClear_TargetES_PDU(void);
*
* Marks as clear the shared memroy array associated with TargetES_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/
int shmClear_TargetES_PDU(void)

shmGet_TargetES_PDU()

void * shmGet_TargetES_PDU(int *len);

Returns pointer to a PDU (in binary continious string
form). Its length is returned in 'len".

The PDU is the Entity State PDU of the TARGET (the threatend entity).

RETURNS:
ptr to (binary string)

NULL on failure. (likely

Note
a returned length of 0
pdu was not set.

PDU on sucess.
because shared memory not available)

is a good indicator that the

*/
void * shmGet_TargetES_PDU(int *len);

/*
- shmClear_TargetES_PDU()
*
* int shmClear_TargetES_PDU(void);
*

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

* Marks as clear the shared memroy array associated with TargetES_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)
*/
int shmClear_TargetES_PDU(void)

/*

*
*
*
*
*
*
*
*

shmClear_ShooterES_PDU()

int shmClear_ShooterES_PDU(void);

Marks as clear the shared memroy array associated with ShooterES_PDU

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)
*/

int shmClear_ShooterES_PDU(void);

/*

*
*
*
*
*
*
*
*

shmClear_Fire_PDU()

int shmClear_Fire_PDU(void);

Marks as clear the shared memroy array associated with Fire_PDU

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)
*/

int shmClear_Fire_PDU(void);

/*

*
*
*
*
*
*
*
*

shmClear_Detonation_PDU()

int shmClear_Detonation_PDU(void);

Marks as clear the shared memroy array associated with Detonation_PDU

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)
*/

int shmClear_Detonation_PDU(void);

/*

*
*
*

shmSet_TargetES_PDU()

int shmSet_TargetES_PDU(void* bin_arry, int len);

$Revision: 0.22 $ June 1998 8

MK_SHM(3) MK_SHM(3)

*/
int shmSet_TargetES_PDU(void* bin_arry, int len);

Copies the argument (bin_arry) into shared memory.
The argument "bin_arry" is a PDU (in binary continious string

form). "len" is its length.
This PDU is the Entity State PDU of the TARGET (the threatend entity).

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)

/*

*
*
*
*
*
*
*
*
*
*
*
*

shmSet_ShooterES_PDU()

int shmSet_ShooterES_PDU(void* bin_arry, int len);

Copies the argument (bin_arry) into shared memory.
The argument "bin_arry" is a PDU (in binary continious string

form). "len" is its length.
This PDU is the Entity State PDU of the Shooting Entity (the entity
who is shooting at the TARGET) - if the Shooting Entity is known).

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)
*/

int shmSet_ShooterES_PDU(void* bin_arry, int len);

/*

*
*
*
*
*
*
*
*
*
*
*

shmSet_Fire_PDU()

int shmSet_Fire_PDU(void* bin_arry, int len);

Copies the argument (bin_arry) into shared memory.
The argument "bin_arry" is a PDU (in binary continious string

form). "len" is its length.
This "Fire PDU" which describes the weapon launch of the threat munition.

RETURNS:
1 is on sucess.

0 on failure (likely because shared memory not available)
*/

int shmSet_Fire_PDU(void* bin_arry, int len);

/*

*
*
*
*
*
*
*

shmSet_Detonation_PDU()

int shmSet_Detonation_PDU(void* bin_arry, int len);

Copies the argument (bin_arry) into shared memory.
The argument "bin_arry" is a PDU (in binary continious string

form). "len" is its length.
This "Detonation PDU" of the munition threating the target.

$Revision: 0.22 $ June 1998 9

l

MK_SHM(3) MK_SHM(3)

*
* RETURNS:
* ptr to (binary string)
* NULL on failure. (likely
*/

void * shmGet_Fire_PDU(int *len

* (Which describes the munitions impact or detonation.)
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)
*/

int shmSet_Detonation_PDU(void* bin_arry, int len);

/*
- shmGet_TargetES_PDU()
*
* void * shmGet_TargetES_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* The PDU is the Entity State PDU of the TARGET (the threatend entity).
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure. (likely because shared memory not available)
*/

void * shmGet_TargetES_PDU(int *len);

/*
- shmGet_ShooterES_PDU()
*
* void * shmGet_ShooterES_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious String
* form). Its length is returned in "len".
* This PDU is the Entity State PDU of the Shooting Entity (the entity
* who is shooting at the TARGET) - if the Shooting Entity is known).
*
* RETURNS:
* ptr to (binary string)
* NULL on failure. (likely
*/

void * shmGet_ShooterES_PDU(int

/*
_ shmGet_Fire_PDU()
*

PDU on sucess.
because shared memory not available)

*len);

* void * shmGet_Fire_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* This "Fire PDU" which describes the weapon launch of the threat munition.

PDU on sucess.
because shared

);

$Revision: 0.22 $ June1998

memory not available)

10

MK_SHM(3) MK_SHM(3)

/*
* shmGet_Detonation_PDU()
*
* void * shmGet_Detonation_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "lent'.
* This "Detonation PDU" of the munition threating the target.
* (Which describes the munitions impact or detonation.)
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure. (likely because shared memory not available)

*/
void * shmGet_Detonation_PDU(int *len);

/*
_ shmSet_TargetID()
*
* int shmSet_TargetID(int arry3[]
*

1;

,

* Set target entity ID in shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers, (the site, application, and ID) which
* together serve to identify an entity in the DIS protocol.
*
* return 1 on success
* 0 on failure.
*/
int shmSet_TargetID(int arry3[]);

/*
_ shmSet_EventID()
*
* int shmSet_EventID(int arry3[]);
*
* Set the DIS event ID in shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers, (the site, application, and ID) which'
* together serve to identify an event the DIS protocol.
*
* return 1 on success
* 0 on failure.
*/
int shmSet_EventID(int arry3[]);

/*
- shmGet_TargetID()
*
* int shmGet_TargetID(int arry3[]);
*
* Get the DIS event ID from shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers. These 3 integers shall be set within the function

$Revision: 0.22 $ June 1998 11

MK_SHM(3) MK_SHM(3)

* (to the site, application, and ID) of the DIS Target EntityID
* in shared memory.
*
* return 1 on success
* 0 on failure.
*/
int shmGet_TargetID(int arry3[1);

/*
- shmGet_EventID()
*
* int shmGet_EventID(int arry3[]);
*
* Called by DisMonitor.
*
* Get the DIS event ID from shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers. These 3 integers shall be set within the function
* (to the site, application, and ID) of the DIS EventID in shared
* memory.
*
* return 1 on success
* 0 on failure.
*/
int shmGet_EventID(int arry3[]);

/*
- shmSet_DisVersion();
*
* int shmSet_DisVersion (char *str);
*
* Copies string into the "DIS Version" location of shared memory.
*
* returns 1 if some or all of the string was copied.
* returns 0 if none of the string could be copied.
*/

int shmSet_DisVersion(char *str);

/*
_ shmGet_DisVersion();
*
* const char *shmGet_DisVersion(); - called by Server
*
* Copies string into the "DIS Version" location of shared memory.
*
* returns ptr to static shared memory holding "DIS Version"
* returns NULL if none is the memory could not be accessed.
*/

const char *shmGet_DisVersion();

/*
- shmGet_QueryType()
*
* VLS_Token shmGet_QueryType(void);

$Revision: 0.22 $ June1998 12

.

MK_SHM(3) MK_SHM(3)

*
* Get the QueryType from shared memory.
*
* Called by DisMonitor.
*
* The QueryType specifies the form in which the query answer
* is to appear. As of this writing, some of the
* valid query types are:
*
* T_QTYPE_mfkDIS_Result
* T_QTYPE_mfkDIS_ProbAll
* T_QTYPE_mfkDIS_ProbK
* T_QTYPE_mfkDIS_ProbMF
* T_QTYPE_mfkDIS_ProbF
* T_QTYPE_mfkDIS_ProbM
* T_QTYPE_mfkDIS_ProbNoDamage
*
* return a valid QueryType VLS_Token on success
* T-ERROR on failure.

*/
VLS_Token shmGet_QueryType(void);

/*
- shmGet_QueryArgsType()
*
* VLS_Token shmGet_QueryArgsType(void);
*
* Get the QueryArgsType from shared memory.
*
* Called by DisMonitor.
*
* The QueryArgsType specifies the arguments which are used
* in setting up the initial conditions for a vulnerability
* assessment. As of this writing, some of the
* valid QueryArgsType's are:
*
* T_VLS_QUERY_TYPE_MFK_BINARY_PDUS - expect binary pdu args
* T_VLS_QUERY_TYPE_MFK_DIS_IDS - expect ID args
*
* return a valid QueryArgsType VLS_Token on success
* T-ERROR on failure.
*/

VW-Token shmGet_QueryArgsType(void);

/*
- shmSet_QueryType()

1 int .shmSet_QueryType(VLS_Token type);
*
* Set the QueryType in shared memory.
*
* Called by Server.
*
* The QueryType specifies the form in which the query answer

.

.

$Revision: 0.22 $ June 1998 13

MK_SHM(S)

* is to appear. As of this writing, some
* valid query types are:
*
* T_QTYPE_mfkDIS_ReSUlt
* T_QTYPE_mfkDIS_ProbAll
* T_QTYPE_mfkDIS_ProbK
* T_QTYPE_mfkDIS_ProbMF
* T_QTYPE_mfkDIS_ProbF
*, T_QTYPE_mfkDIS_ProbM
* T_QTYPE_mfkDIS_PrObNODamage
*
*I return 1 on success.
* 0 on failure.
*/
int shmSet_QueryType(VLS_Token type)

/*
_ shmSet_QueryArgsType()
*
* int shmSet_QueryArgsType(
*
* Set the QueryArgsType in
*
* Called by Server.
*

VLS_Token type

shared memory.

MK_SHM(3)

of the

1;

* The QueryArgsType specifies the arguments which are used
* in setting up the initial conditions for a vulnerability
* assessment. As of this writing, some of the
* valid QueryArgsType's are:
*
* T_VLS_QUERY_TYPE_MFK_BINARY_PDUS - expect binary pdu args
* T_VLS_QUERY_TYPE_MFK_DIS_IDS - expect ID args
*
* return 1 on sucess.
* 0 on failure.
*/

int .shmSet_QueryArgsType(VLS_Token type);

/*
- shmSet_VLResult()
*

. * int shmSet_VLResult(VL_Result result, int flag);
*
* return 1 on sucess.
* 0 on failure.
*/

int shmSet_VLResult(VL_Result result, int flag);

/*
- shmGet_VLResult()
*
* int shmGet_VLResult(VL_Result *result, int *flag);
*
* Sets

$Revision: 0.22 $

*result and *flag to the VLResult in shared memory and source

June 1998 14

MK_SHM(3) MK_SHM(3)

* flag respectively. (See the vl API layer of the VL Data manager.
*
* returns 1 on success;
* 0 on failure
*/
int shmGet_VLResult(VL_Result *result, int *flag);

/*
- sbmGet_mfkPS()
*
* float *shmGet_mfkPS(float probs5[1
*
* return probs5 on sucess.
* NULL on failure.
*/
float *shmGet_mfkPS(float probs5[1);

/*
- shmSet_mfkPS()

: int shmSet_mfkPS(float probs5[1);
*
* return 1 on sucess.
* 0 on failure.
*/
int shmSet_mfkPS(float probs5[1);

/*
- shmGet_prob()
*
* double shmGet_prob(void);
*

1;

* returns WHATEVER is in that share memory location.
*

*/
double sbmGet_prob(void);

/*
- shmSet_prob()
*
* int shmSet_prob(double prob);
*
* return 1 on sucess.
* 0 on failure.
*/
int shmSet_prob(double prob);

/*
_ shm_zero_mem()
*
* void shm_zero_mem(int unused)
*
* This function is called when a HUP signal is recieved

$Revision: 0.22 $ June 1998 15

l

MK_SHM(3) MK_SHM(3)

* by the vlserver. It sets all of the shared memory
* area to zero (0).
*

*/
void shm_zero_mem(int unused);

/*
- shmIsAttached()
*
* Boo1 shmIsAttached(void)
*
* Return 1 (TRUE) if shared memory is currently attached.
* Return 0 (FALSE) if not.
*/

Boo1 shmIsAttached(void);

/*
- shmClear_ErrorMsg()
*
* void shmClear_ErrorMsg(void);
*
* Called by Server to effectively clear the error message buffer.
* (so that the next call to shmGet_ErrorMsg() returns NULL;
*

*/
void shmClear_ErrorMsg(void);

/*
- shmGet_ErrorMsg()
*
* const char *shmGet_ErrorMsg(void);
*
* Called by Server to fetch the null terminated string
* message placed in the error message buffer.
* (presumably to pass on to the client).
*
* See Also: DIS Server utility APIs cprint(3), rpLerrOr(3)
*

* returns pointer to the error message string.
* NULL if the error message string is not set.
* (i.e. there is no error message).
*

*/
const char *shmGet_ErrorMsg(void);

/*
_ shmSet_ErrorMsg()
*
* int shmSet_ErrorMsg(char *str_error_msg);
*
* Called by DIS Monitor to set the null terminated string
* message placed in the error message buffer.
* (presumably to pass on to the client by the server).
*

$Revision: 0.22 $ June 1998 16

MK_SHM(3) MK_SHM(3)

*
*
*
*
*
*
*
*
*
*

See Also: DIS Server utility APIs cprint(3), rpt_error(3)

returns 1 (TRUE) if string was copied.
0 (FALSE) not (shared memmory was not accessable)

NOTES:
A maximum of the system defined BUFSIZ bytes

can be placed into the error buffer.
The server may pass even fewer bytes onto the client.
Generally, the server will strive to send less than

one message.* 1024 bytes to a client at in any
*/
int shmSet_ErrorMsg(char *str_error_msg)

SEE ALSO
Other DIS Lethalityservercomponents:

v1(3), vlserver(l), dis_mon(l), vlexample_client.c - an undocumented example client program provided
with the DIS Lethality server(look in $VLS_HOME/src/Server).

Author
Geoff Sauerbom cgeoff@?czrl.mil>, US Army ResearchLab. 1997,1998.

$Revision: 0.22 $ June 1998 17

SCAN(3) SCAN(S)

NAME
scan_&, scan-double, scan-long, scan_next_white, scan_skip_cmnt, scan_is_eof, scan_linenum,
fscanjnt, fscan_double, fscan_long, fscan_next_white, fscan_skip_cmnt, fscan_is_eof, fscan_linenum -
general scanning routines (for scanning ascii input).

SYNOPSIS
#include “scannerh”

I* Initialization / Closing routines: “I

int fscan_reg(F’ILE *fp, char *filename);
PILE *fscan_fopen(char *filename,char *typeopen);
FILE *ikan_fopen_wMsgOnErr(char *filename,char *typeopen,char *callingfunc);
int fscan_unreg(FlLE *fp);
int fscan_fclose(FlLE *fp);

I* File status functions: “1

const char *fscan_glename(PILE *fp);
int fscan_linenum(FlLE *fp);
int scan linenum(void);
int scan-is eofo;
int f&a; is eof(FILE_- *fp);

I* Read head movementfunctions: *I

int scan_neti_white(void);
int fkan_next_white(FILE *fp);
int fscan_skip_cmnt(FILE *fp);
int scan_skip_cmnt(void);
1” *Experts only* - fscan_getc(), fscan_ungetc(), scan_getc(), scan_ungetc(), *BY-PASSESE COMMENT &
white spacejiltering. *I

int fscan_getc(FlLE *fp);
int scan_getc(void);
int ikan_ungetc(int c, FILE *fp);
int scan_ungetc(int c);

I* Read head movement (and data interpretation)functions: *I

int &can int@lLE *fp);
int -3t(void);
double fkan_double(FILE *fp);
double scan_double(void);
long fkan_long(F’ILE *fp);
long scan_long(void);

I* Read head movement (and strings/line scanning)&nctions: *I

int fscan_quoted_string(*fp, char *bu$ int buffer-size);
hit scan_quoted_string(char *buff, int buffer-size);
int fgetlhte(FILE *fp,char string[] jnt limit);
char *scan_string(char *bu$ int bufSze);
char *fscan_string(FILE *fp, char *buff, int buffsize);

$Revision: 0.11 $ 17 Jun 1998 1

SCAN(3)

int fscansets(FILE *fp, char *s, int n);
lnt scansets(char *s, int n);

/* String operating functions: *I

char *sscan_sklp_white(char* str);
char *sscan_next_white(char* str);
lnt sscan_int(char *str);
double sscan_double(char *str);
void sscan_strlp_quotes(char *str);
void sscan_add_quoted_quotes(char *str);

DESCRU’TION
This library provides general scanuiug functions with internal input line number tracking.

Line number tracking: It is important to use fscan_unregO (or fscan_fcloseO) when finished with a file.
‘Ibis is because if a file is closed outside of the scanner library without notifying the Iibrary (via
&can_unregO) then on many operating systems it it likely the next file opened will have the same FILE
pointer hence, the scanner library will think it is continuing to operate the on the original file (and the line
numbers reported will be incorrect).

fscan_fopenO , or fkcan_reg() must be used to open and register a file in order to track line numbers and
file names. All other library function may still be used to scan through a file, however if fscan_reg() and
fscan_fopen() are not used, then fscan_filename() will not be able to return the correctjilenume. All rou-
tines keep track of each new file pointer fp sent to the library. In this way information can be retrieved
about the current line number and EOF status of any file (via the fscan_linenurn and fscan_is_eofO func-
tions.

WARNING fscan_getc(FILE *fp), and scan_getc() bypass comment and white-space filtering. These
should only by used by expert experts.

BUGS
Really ‘IjUst special features”. $scan_Zinenum@) returns the current line number for the opened file pointed
to by file pointer fp. In this way the user can report line numbers associated with read errors.
fican_linenum() returns an int, so files with more than INT_MAX lines, will have a unpredictable value
returned.

A maximum of SCANNERLIB_OPEN_FlLES_TRACRED files are monitored. (If a user wants to track
more than SCANNER.LIB_OPEN_FlLES_TRACKED files, the library will need recompiling).

Unless fscan_unregO is called, scanner library functions cannot tell when a file is closed. If the scanner
library does not know when tbe file is closed memory used by the library is not recycled. If a file is closed
without informing the library (via fscan_unreg() or bcan_fclose()) and then a new file is opened and that
new file has the same file pointer (FZZ,@) value as the (now) closed first file, then the newly opened file
will incorrectly be tracked as if it were the old file (and its first reported linermmber will equal the last
linenumber read from the original file).

Further details on library functions:

Initialization and closing routines:
/*

N fscan_reg()

$Revision: 0 .11 $ 17 Jun 1998 2

SCAN(3) SCAN(3)

*

* int fscan_reg(FlLE *fp, char *filename);
*
* Register a file pointer (fp) (and optional file name (filename)
* with the scamrer library.
* Once registerd, fscan_linenum() and fscan_filename() can be
* used to report the current line number and the file name
* being read.
* If filename is passed as NULL, then the WNKNOWN_FILE_NAMR”
* is used to report the filename (via: fscan_filename()).
*
* returns an integer >= 0 on success.
* a negative integer on failure.
*
“I

‘I*
_ fscan_fopen()
*
* FILE *fscan_fopen(char *filename, char *typeopen)
*
* attempt to open file “filename”, for the purpose of Yypeopen”
* (* these two args are passed directly to fopen() *)
* if successful, the file is then registered into the scanner library.
* (* via fscan_reg() *)
*
* returns FILE pointer to the opened file on success.
* NULL on failure.
*/

_ fscan_fopen_wMsgOnErr()
*
* FILE *fscan_fopen_wMsgOriErr(char *filename, char *typeopen, char *callingfunc)
*
* the function behaves like fscan_fopen() with the addition of
* printing error message to stderr if file could not be opened.
* the messaged are either:
* “fscan_fopen_wMsgOnErr(): called with NULL arg(s)”
* or “CallingFunctionName(): could not open “file” for “r”.
*
* (Where “CallingFunction.Name()” represents the string pointed to by
* char *callingfunc, the argument passed to this function).
*
* returns a FILE pointer to the opened file on success.
* NULL on failure.
*I

/*
- fscan_umeg()
*
* int fscan_unreg(FILE *fp)
*

$Revision: 0.11 $ 17 Jun 1998 3

SCAN(3) SCAN(3)

* unregister a file from the scanner library.
* (but do not attempt a close of the file stream).
*
* return 0 if the if successful close.
* EOF is there is an error.
*
* (passing a NULL file pointer ‘Tp” or a
* file pointer that was never registered
* [via fscan_fopen_wMsgOnErr() or fscan_reg()]
* are errors.)
*
*I

_ fscan_fclose()
*

* int fscan_fclose(FILE *fp)
*
* close a file and unregister it with the scanner library.
*
* return 0 if the if successful close.
* EOF is there is an error.
*
* (passing a NULL file pointer “fp” or a
* file pointer that was never registered
* [via fscan_fopen_wMsgOnErr() or fscan_reg()l
* are errors.)
*
*I

Functions to maintain and track file status information:

- fscan_linenum()
*
* int fscan_linenum(FILE *fp)
*
* Returns the current line number for the
* opened file pointed to by file pointer “f@“.
* In this way the user can report line numbers associated with
* read errors.
*
* fscan_linenum() returns an int, so files with more
* than INT_MAX lines, will have a unpredictable value returned.
*
*I

scan_linenum() is equivalent to fscan_linenum(stdin)

/*
_ fscan_is_eof()
*
* int fscan_is_eof(FILE *fp)
*
* Determine if the file associated with the file pointer (fp)

.

$Revision: 0.11 $ 17 Jun 1998 4

.

SCANQ) SCAN(3)

* is at the end-of-file. (Has it’s read head at the end-of-file).
*
* Return 1 if at EOF.
* otherwise return 0.
*/

scan_is_eof() is equivalent to fscan_is_eof(stdin)

- fscan_filename()
*
* const char *fscan_filename(FILE *fp)
*
* returns pointer to the string file name registered via fscan_reg().
* or NULL upon an error.
* (such as the name or file pointer (fp) was never registered).
*/

Read-head movement functions.

- fscan_next_white()
*
* int fscan_next_white(FILE *fp)
*
* For the file associated with (fp). move it’s read head
* to the next “whitespace” character.
*
* See Also:
* isspace(3)
*/

scan_next_white() is equivalent to fscan_next_white(stdin)

- fscan_skip_cmnt()
*
* fscan_skip_cmnt(FILE *fp)
*
* Move the read head past comments (lines beginning with a pound #)
* and any white space. That is, bring the read head to the first
* non-comment, non-whitespace line. (This might be an EOF).
*
* Returns the next character to be read or
* EOF if at end of file.
*
* NOTES:
*
* All comments are denoted by a ‘#’ as the first character of a line.
* There is currently library function to change the comment character.
*I

$Revision: 0.11 $ 17 Jun 1998 5

SCAN(3) SCAN(3)

scan_skip_cmnt() is equivalent to fscan_next_white(stdin)

/*
_ fscan_getc()
*
* int fscangetc(FILE *fp);
*
* Read the next character in the file (move the read-head forward).
*
* return the next character.
* return EOF if at file end.
*
* *WARNING* this routine by-passes comment and white-space
* filtering and should only by used if you know
* what you are doing . . . (you probably do).
*

*/
scan_getc() is equivalant to fscan_getc(stdin)

a fscan_ungetc();
*
* int fscan_tmgetc(int c, FJLE *fp);
*
* Place the character “c” , back into the input stream
* of me file associated with the file pointer (fp).
*
*
*/

scan_ungetc(c) is equivalent to fscan_ungetc(c,stdin)

Other’read-head movement functions (with data interpretation).

- fscan_int()
*
* int fscan_int(FILE *fp)
*
*
*
*
*
*
*
*
*
*
*

Scan the input stream (fp) and attempt to interpret the next character
string as an integer. Any white space and comment lines
(see fscan_skip_cmnt() are skipped prior to the attempted interpretation.

Returns
the integer if successful.

if unsuccessful, the returned value is undefined and
an error message is printed.

scan_int() is equivalent to fscan_int(stdin)
fscan_double() is similar except the next floating point number is returned.
scan_double() is equivalent to fscan_double(stdin).
fscan_long() is similar except the next long is returned.

$Revision: 0.11 $ 17 Jun 1998 6

.

SCAN(3) SCAN(3)

scan_long() is equivalent to fscan_long(stdin).

* fscan_quoted_string(FILE *fp, char *buffer, int buffer-size)
*
* Read a quoted string from the input stream
* “this is an example” and place it in buffer.
* fscan_quoted_string() will treat all lines ending in the
* single backslash character 6)
* as a continuation line.
*
* buffer is filled with the string (to include quotes) up to
* buffer-size characters.
*
* White space an commented lines are skipped prior
* to reading the quoted string.
*
* returns 1 on success,
* 0 on failure. (such as no quoted string found).
*I

scan_quoted_string() is is equivalant to scan_quoted_string(stdin)

I*
_ fgetline()
*
* int fgetline(FILE *fp, char *string, int limit >
*
* Read from the file stream pointed to by “fp”.
* place the contents up to (and including) the first
* newline character In’.
*
* Characters read (and placed
* into the buffer “string”) and null terminates the
* buffer (with W after the last character read).
* No more than ‘limit”-1 characters will be placed
* into the buffer “string”.
*
* RJZURNS the number of characters placed into “string”
* when “limit” is not reached. When limit
* is reached, then “limit” is always returned
* even though ‘limit”-1 characters will have
* been placed in the buffer.
*
* EOF is returned if EOF is the first character read.
*
* adopted from the K&R getline by Geoff Sauerbom.
*
* See also fgets(3)
*
*I

$Revision: 0.11 $ 17 Jtm 1998 7

SCAN(3) SCAN(3)

/*
” fscan_string()
*
* char *fscan_string(FILE *fp, char *buff, int buffsize)
*
* Reads a white space delimited string, returns it in
* the buffer “buff ‘. no more than ‘buffsize”-I
* characters will be placed in “buff”.
*
* RETURNS pointer to string that was read.
* if no string found before EOF, (or just EOF seen) then
* NULL is returned.
*I

scan_string(b, bsz) is equivalent to fscan_string(stdin,b,bsz)

.

f”
_ fscanAets()
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

int fscan_gets(FILE *fp, char *buff, int n)

fscan_gets() is used to read the rest of a line
[from the fp to the next occurrence of

END-OF-LINE (0

all read characters are placed into buff.
no more than n chars are read. The buffer is null terminated.

RETURNS
the number of characters read or EOF if END-OF-FILE is read.

If the limit “n” is reached, then n is always returned
even though n- 1 characters will have been placed
in the buffer.

or comment character
or END-OF-FILE]

scan_gets(str, n) is equivalent to fscan_gets(stdin,str,n)

Some string equivalent functions (similar to other library functions,
however they operate on strings not file streams):

I*
I sscan_skip_white()
*
* char *sscan_skip_white(char* str)
*
* Scan the passed null terminated character string array (str).

$Revision: 0.11 $ 17 Jun 1998 8

SCAN(S) SCAN(3)

*

* Return the address of the first non-white character.
* if there is only white space in the string,
* then the address of the terminating NULL is returned.
* NULL is returned if the str is NULL.
*/

a sscan_next_white()
*
* char *sscan_next_white(char* str)
*
* return the address of the next white space character in the string str.
* NULL is returned on failure or end-of-string is reached
* without finding a white space character.
*
* see also: isspace(3)
*I

I*
- sscan_int()
*

* int sscan_int(char *str);
*
* read and return int from the string str.
*
* REIURNS
* the scanned integer value.
* If an integer is not scanned,
* an error message is printed and the
* is returned.
*

_ sscan_double()
*
* double sscan_double(char *str);
*
* read and return double from the string str.
*
* RETURNS
* the scanned floating point number value.
* If number cannot be scanned,
* an error message is printed and the
* 0 is retumed.
*

I*
- sscan_stip_quotes()
*

$Revision: 0.11 $ 17 Jun 1998 9

SCAN(3) SCAN(S)

* void sscan_strip_quotes(char *str)
*

* remove quotes from a string. (but handle quoted quotes i.e.
*
*/

- void sscan_add_quoted_quotes(char *str >
*
* add ” before any quotes . ” ->becomes->
* returns a pointer to a static character buffer
* (which will be over-written on next call).
* The internal buffer is BUFFSIZE in length.
* The enquoted string is in this buffer.
*I

SEE ALSO
getsO), getc(3), ungetc(3), sscanf(3), scanf(3), strtok(3)

AUTHOR
Geoff Sauerbom <geojX@url.mil> , US Army Research Lab. 1995,1996,1997,1998.

$Revision: 0.11 $ 17 Jun 1998 10

W3) W3)

.

I l

NAME
vl_mfk_ArlDIS_Result_NoNet, vl_mfk_ArlDIS_ProbAll_NoNet, _vl_mfk_ArlDIS_ProbM_NoNet,
_vl_mf-lc_kTDIS_ProbMF_NoNet, _vl_mfk_ArlDIS_ProbF_NoNet, _vl_mfk_klDIS_ProbK_NoNet,
_vl_mfk_ArlDIS_ProbNoDamage_NoNet

vl_mfk_binaryDIS_Result_NoNet, vl_mfk_binaryDIS_ProbAll_NoNet, _vl_m&_binary-
DIS_ProbK_NoNet, _vl_mfk_binaryDIS_ProbMF_NoNet, _vl_mfk_binaryDIS_ProbF_NoNet,
_vl_mfk_binaryDIS_ProbM_NoNet, _vl_mfk_binaxyDIS_ProbNoDamage_NoNet

vl_mfkDIS_Result, vl_mfkDIS_ProbAll, _vl_mfkDIS_ProbK, _vl_mfkDIS_ProbW, _vl_mfkDIS_ProbF,-
_vl_mfkDIS_ProbM, _vl_mfkDIS_ProbNoDamage

_vl_drandom, vl_GetResultErrorValue, vl_mfk_directFireIsAHit,
CRandomDraw

VL_Result VL_mfkDIS_ResultGeneri-

SYNOPSIS
#include cvl.h>
/*_________________v1 mfk_ArlDIS.*.() functions__________________*/
VL_Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, . ..).
float* vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . .);
double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_klDIS_ProbF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_klDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..).

/*_________________vl mfk binaryDIS_() func&~ _____ ____ ______ */

LX-Result vl_mflCbiinryDIS_Result_NoNet(int *fig, VLSetParam_t itype, . ..).
float* vl_mfk_binaryDIS_ProbAll_NoNet(VT_SetParam_t itype, . ..).
double _vl_mfk_binaryDIS_ProbK_NoNet(VLSetParam_t itype, . ..).
double _vl_mn<_binaryDIS_ProbMF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_binaryDIS_ProbF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfl_binaryDIS_ProbM_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetl?aram_t itype, . ..).

/* ____________ _____vl mfkDIS._() functions_____ ________________ */
/* DislD * an ar& of 3 16-bit unsigned integers (Uint16[3]) */
VL_Result vl_mfkDIS_Result(int*flag, DisID *entityID, DisID *eventID);
float* vl_mfkDIS_ProbAll(DisID *entitylD, DisID *event.ID);
double _vl_m&DIS_ProbK(DisID *entitylD, DisID *eventID);
double _vl_n&DIS_ProbMF(DislD *entitylD, DisID *eventlD);
double _vl_mfkDIS_ProbF(DislD *entityID, DisID *eventlD);.
double _vl_mfkDIS_ProbM(DislD *entityID, DisID *eventID);
double _vl_mfkDIS_ProbNoDamage(DisID *entityID, DisID *eventID);

/* _____ ______ ______ vl__() Utility functions ________________-- */
void _vl_drandom_seed(int seed);
double _vl_drandom(void);
int vl_Get.ResultErrorValue(void);
int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result);
VL_Result VL_mfkDIS_ResultGenericRandomDraw(void);

$Revision: 0.4 $ June 1998 1

W3)

DESCRIETION
The vl API layer is used for a particular class of vulnerability / lethality methodology (or taxonomy). A
vulnerability / lethality methodology is a means by which one divides the set of all possible outcomes for a
vulnerability result. The current API only includes the Mobility, Firepower, Catastrophic (MFK) Kill result
set. In this set the only possible outcomes of a lethal result are:

Outcome Meaning
MKILL Mobility Kill only.
FKILL Fire Power Kill only.
MFKILL Both Mobility and Fire Power Kills.
KKILL Catastrophic Power Kill
NODAMAGE Probability that no additional damage occurs.

Application programs call an API. They pass enough information to describe the initial conditions of the
vulnerability calculation. Internally the VI., API will set the appropriate parameters in the VLparam layer
(see vlparam(3)). Then the VL API will call the appropriate vulnerability “lookup” function (see
db_tbl_reader_funcO from the DIS lethality server’s db(3) layer) and return the results.

There are three sets of MFK APIs. Each set may be used to retrieve the equivalent V/L results. Which API
is selected for use depends on which inputs are expected by a particular API. The inputs required by the
three sets are:

API layer name Type of input expected
vl_mfk_binaryDIS_... DIS PDUs are input. The PDU format is

a continuous binary array containing the
DIS PDU data as specified in the standard
IEEE 1278.1

vl_mfk_ArlDIS_... DIS PDUs are input. The PDU format is
‘ a data structure particular to the ARL DIS
Manager.

v1_mfkD1s_... Input comprises of the DIS Entity ID of the
entity whose vulnerability is being assessed,
and the DIS ID of the munition detonation event
which is of interest.

.

.

API layer names in the table above indicate the first sequence of characters in the nume of the indicated
functions. Most of the functions are actually proceeded by an underscore (_). If the application program is
monitoring the DIS environment then one of the “vl_mfkDIS... ” APIs might be the best choice of APIs. If
the calling application is a client to the ARL DZS Manager (see dis_mgr(l)), then it might be most con-
venient to use the ‘Vl_mfk_ArlDIS_...” set of functions.

Synopsis of the API functions are now given in the following order:

/*_________________vI_mtkDIs...() functions_____________________*/
VL_Result vl_mfkDIS_Result(int*flag, DislD *entityID, DisID *eventID);
float* vl_mfkDIS_ProbAll(DisID *entityID, DislD *eventID);
double _vl_mfkDIS_ProbK(DislD *entityID, DislD *eventID);
double _vl_mfkDIS_ProbMF(DisID *entityID, DislD *eventID);
double _vl_mfkDIS_ProbF(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbM(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbNoDamage(DisID *entityID, DisID *eventlD);
/*_______ __________vl_n&ArlDIS.*.() functions ______ ____________*/
VL_Result vl_m&_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itypes . ..).
float* vl_mfk_~lDIS_ProbAll_NoNet(VLSetParam_t itype, . . .);
double _vl_mfk_klDIS_ProbM_NoNet(VLSetParam_t itype, . ..).

$Revision: 0.4 $ June 1998 2

W3) W3)

double _vl_mfk_klDIS_ProbMF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetJ?aram_t itype, . ..).
double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..).
/*_________________vl_...() Utility functions_______ _______ ____*/
!&-Result vl_mfl_binaryDIS_Result_NoNet(int *fig, VLSetParam_t itype, . ..).
float* vl_mfk_binaxyDIS_ProbAll_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_binaryDIS_ProbK_NoNet(VLSetParam_t itype, . ..>.
double _vl_mfk_binaryDIS_ProbMF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_binaryDIS_ProbF_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_binaryDIS_ProbM_NoNet(VLSetParam_t itype, . ..).
double _vl_mfk_binaqDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..).
/*_________________vl m&_binqDIS...() functions-----__--------*/
void _vl_drandomIseed(int seed);
double _vl_draudom(void);
int vl_GetResultErrorValue(void);
int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result);

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

a *

*

*

*

*

*

*

*

*

*

*

*

*

vl_mfkDIS_Result()

int vl_mfkDIS_Result(int *source, DisID *entityID, DisID *eventID)

This function returns the result of the detonation with
identification "eventID" verses the target whose DIS entity ID
is "entityID"'.

The type DisID is a pointer to an array of 3 16-bit integers.
"eventID" refers to the identification used to denote a
fire/detonation event sequence in DIS (i.e. the "Event ID" field
of a DIS Detonation PDU), while "entityID refers to the
identification used to denote an entity for a particular DIS
exercise (i.e. the "entity identification" field of the Entity
State PDU.

RETURNS:

The FLAG (*fig) parameter is always set. (See below).
The function will always return one of the following results:

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

PS_ERROR

The naming convention for these results is as follows:

#1_#2_#3

$Revision: 0.4 $ June 1998 3

W3)

* #1 is "PS_" (meant to imply "Probability Space")
* #2 is used to indicate the analysis method being applied.
* (in this case the analysis method is to divide the probability
* space between the M,F,K kills (and combinations) as well as the
* implied No Damage possibility).
* #3 is used to indicate a particular event in that space.
*
* Hypothetically, there may be other results returned depending on what is
* defined as the result set for the targetted entity. (For example for a
* helicopter, a PS_MISSION_ABORT might be a logical addition to a class of
* the result sets).
*
* The integer referenced by the parameter "source" is a flag which is set
* to inform the caller whether the source of the function's result was from
* a valid PKH table or from a less authoritative source.
*

* The "FLAG" (*fig) parameter
* ____________________-- _____

* The " FLAG " (*fig) parameter is always set with
* one of the following values:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Value
of FLAG MEANING
_______ _________________ ______________________________

-1 Unknown error.

A generic pkh result is returned but is not authoritative.

In this case calling the function rpt_perror() might shed
some light on the source of the error. (This is an
internal vlserver library procedure whose purpose is
similar to perroro)'.

0 Success.

The pkh source for the referenced entity and threat
munition (as defined in the DAMAGE_SOURCE_META_DATA_FILE)
was successfully found, interpreted, and used in
the calculation of the returned (VL_Result) value.

1 No Table.

A generic pkh result is returned but is not authoritative.

A reference to a vulnerability source could not be found
in the DAMAGE_SOURCE_META_DATA_FILE for this
combination of entity and threat.

2 Corrupt Table.

A generic pkh result is returned but is not authoritative.

$Revision: 0.4 $ June1998

W3)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

W3)

The the referenced vulnerability source data was found,
however there was an error when attempting to interpret
the data.

3 No Environment Data.

A generic pkh result is returned but is not authoritative.

Data describing the fire and detonation events were
never observed while monitoring the run time
environment.

4 Unknown Target.

A generic pkh result is returned but is not authoritative.

A reference to the threatened (targeted) entity could
not be found in the DIS_ENTITIES_FILE nor in the
DIS_AUXILIARY_ENTITIES_FILE.

5 Unknown Threat.

A generic pkh result is returned but is not authoritative.

A reference to the threat munition could
not be found in the DIS_ENTITIES_FILE nor in the
DIS_AUXILIARY_ENTITIES_FILE.

* Note: This function depends on the DIS Network having been monitored by
* the Lethality server long enough to have detected the fire,
* detonation, and at least one Entity State PDU from both the target and
* firer. (Otherwise FLAG will not be set to "Success.").
*
* See also:
*
* VL_Result vl_mfk_ArlDIS_Result_NoNet(int*Flag, VLSetParam_t itype, . ..)
* VL_Result vl_mfk_binaryDIS_Result_NoNet(int*Flag,VLSetParam_t itype, . ..)
*

*/
VL_Result vl_mfkDIS_Result(int*flg, DisID *entityID, DisID *eventID)

/*
- vl_mfkDIS_ProbAll()
*
* float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID)
*
* This function returns the a static array containing probabilities
* certain kill levels. The indices of the array are as follows:
*
* Array Element (index)
* Element Value Value Meaning
* ___---- ------~-------- ____________________--______-----

* 0 PS_MFK_M Mobility Kill only.

of

$Revision: 0.4$ June1998 5

W3) W3)

* 1 PS_MFK_F Fire Power Kill only.
* 2 PS_MFK_MF Both Mobility and Fire Power Kills.
* 3 PS_MFK_K Catastrophic Power Kill
* 4 PS_MFK_NODAMAGE Probability that no additional
* damage occurs.
*
* The type DisID is a pointer to an array of 3 16-bit integers.
* "eventID" refers to the identification used to denote a
* fire/detonation event sequence in DIS (i.e. the "Event ID" field
* of a DIS Detonation PDU), while "entityID refers to the
* identification used to denote an entity for a particular DIS
* exercise (i.e. the "entity identification" field of the Entity
* State PDU.
*
*

* DIAGNOSTICS:
*
* returns a static array containing additive probabilities of
* K,MF,F,M, and No Damage. The values in the array must
* be used be for subsequent calls to this function.
*
* returns.NULL on an error.
*
*
* These values are "additive" (sometimes referred to as
* a thermometer redistribution). They are added together in the
* following manner.
*
* p[PS_MFK_M] = Probability of Mobility Kill Only.
* p[PS_MFK_F] = Probability of Mobility Kill Only
* + Probability of Fire Power Kill only.
* p[PS_MFK_MF] = Probability of Mobility Kill Only
* + Probability of Fire Power Kill only
* + Both Mobility and Fire Power Kills.
* p[PS_MFK_K] = Probability of Mobility Kill Only
* + Probability of Fire Power Kill only
* + Probability of Both Mobility and Fire Power Kills
* + Probability of Catastrophic Power Kill.
* p[PS_MFK_NODAMAGE] = 1.0
*
* That is these values are arranged so that they appear on [O,l] in order
* that one random number may select the event which occurs.
*
* e.g. if p(m only) = .lO ,
* p(f only) = .lO
* p(m & f) = .25
* p(k) = .25
* (and therefore) p(no damg)= 1.0 - (.1+.1+.25.+.25) = .30
*
* then a probability event space would be:
*
*
* IMlFl M&F I K I no W7 I
* I I I I I I

$Revision: 0.4 $ June1998 6

.

W3) W3)

.

* +___+___+___+___+___+___+___+___+___+___+
* 0s .l .2 .3 .4 .5 .6 .7 .8 .9 1.0
*
* resulting in the vector:
*
* p[PSiMFK_M] = p[O] = .lO
* p[PS_MFK_Fl = p[l] = .20
* p[PS_MFK_MF] = p[2] = .45
* P [PS-MFK-K 1 = p[3] = .70
* p[PS_MFK_NODAMAGE] = p[4] =l.OO
*
* being returned by vl_mfk_ArlDIS_ProbAll_NoNet()
*

*/
float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID)

The following functions expect the same input as vl_mfkDIS_ProbAllO however, unlike
vl_mfkDIS_ProbAll() they each return only one probability and not all the probabilities of every event
occurring.

/*
*
* double _vl_mfkDIS_ProbK(DisID *entityID, DisID *eventID);
*
* Returns the probability of a K-KILL (catastrophic kill)
* and only a K-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS
* otherwise the
*

*/

/*

THAN 0 on an error,
probability of an K-KILL and only a K-KILL.

_ProbMF(DisID *entityID, DisID *eventID);* double _vl_mfkDIS
*
* Returns the probability of an MF-KILL (both mobility and firepower kill)
* and only an MF-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an MF-KILL and only an MF-KILL.
*

*/

/*
* double _vl_mfkDIS_ProbF(DisID *entityID, DisID *eventID);
*

$Revision: 0.4 $ June 1998 7

W3) W3)

* Returns the probability of an F-KILL (fire power kill)
* and only an F-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS
* otherwise the
*

*/

THAN 0 on an error,
probability of an F-KILL and only an F-KILL.

/*
* double _vl_mfkDIS_ProbM(DisID *entityID, DisID *eventID);
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an M-KILL and only an M-KILL.
*/

.

/*
* double _vl_mfkDIS_ProbNoDamage(DisID *entityID, DisID *eventID);
*
* Returns the probability of an M-KILL (mobility kill)
* and only an M-KILL.
*
* The parameters passed to this.function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of NoDamage.
*/

/*- ----------------vl_mfk_ArlDIS...() fun~tions------~~~~~--~~~~~~/

/*

*
*
*
*
*
*
*
*
*
*
*
*
*

vl_mfk_ArlDIS_Result_NoNet()

VL_Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, . ..)

This function returns an MFK kill type (i.e. one of Mobility, Fire
Power, Mobility & Fire, Catastrophic Kills, or No Damage) as the result
of the interaction of the target and threat.

The answer may possibly be "made up" in the event
that there is not enough information to find the correct
answer. If this is the case, the parameter (flg) is set to
a non-zero number. (See "The FLAG (*fig) parameter" below).

$Revision: 0.4 $ June 1998 8

.

W3)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

W3)

The target, threat, and their environment are determined by the passed
arguments. The VLSetParam_t data object (itype) identifies the
required inputs needed to prepare a vulnerability assessment. (Namely
it identifies the variables that are being passed, which are required
to set the initial conditions of the vulnerability assessment.)

In the event that itype == VL_PARAM_SET_METH_DIS_HitToKill
It indicates that passing the DIS PDUS

Entity State (target)
Entity State (firer)
FirePDU
DetonationPDU

shall be sufficient to set the VL parameters to return the
correct result from the lookup table (or other data source).

(pointers to these data structures will be passed to this routine (after
itype):

This function returns the result of the target/threat/detonation
interaction

RETURNS:

The FLAG (*fig) parameter is always Set. (See.below).
The function will always return one of the following results:

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

PS_ERROR

The naming convention for these results is as follows:

#1_#2_#3

#1 is "PS_" (meant to imply "Probability Space")
#2 is used to indicate the analysis method being applied.

(in this case the analysis method is to divide the probability
space between the M,F,K kills (and combinations) as well as the
implied No Damage possibility).

#3 is used to indicate a particular event in that space.

Hypothetically, there may be other results returned depending on what is
defined as the result set for the targetted entity. (For example for a
helicopter, a PS_MISSION_ABORT might be a logical addition to a class of
the result sets).

The integer referenced by the parameter "source" is a flag which is set
to inform the caller whether the source of the function's result was from

$Revision: 0.4 $ June 1998

W3)

*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

a valid PKH table or from a less authoritative source.

The "FLAG" (*fig) parameter
________________________---

The "FLAG" (*fig) parameter is always set with
one same values as it is set in the function vl_mfkDIS_Result().

Note: This function depends on the DIS Network having been monitored by
the Lethality server long enough to have detected the fire,
detonation, and at least one Entity State PDU from both the target and
firer. (Otherwise FLAG will not be set to "Success.").

See also:

W3)

VL_Result vl_mfkDIS_Result(int EntityID, int DetID)
VL_Result vl_mfk_binaryDIS_Result_NoNet(int*Flag,VLSetParam_t itype, . ..)

*/
VL_Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, . . .)

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

vl_mfk_ArlDIS_ProbAll_NoNet()

float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . .)

This function returns the a static array containing probabilities of
certain kill levels. The function's behaviour and return values
are the same as the function vl_mfkDIS_ProbAll().
The only difference is the parameter set passed to the function.
This function expects the following parameters:

The first parameter argument is of type VLSetParam_t.

This type is used to indicate which data sources (inputs)
are sufficient to set the VL parameters in order to be able
to return the correct result from the lookup table
(or other data source). These indicated data sources
shall then be the 2nd, 3rd, 4th, . . . etc. parameter arguments
to the function.

To date there are only two VLSetParam_t types defined:

VL_PARAM_SET_METH_DIS_HitToKill
VL_PARAM_SET_METH_DIS_ProxKill

They both require the same arguments. Namely, pointers to
the DIS PDUS:

Entity State (for the target),
Entity State (for the firer),
Fire PDU,
and Detonation PDU.

These PDUs will be the 2nd, 3rd, 4th, and 5th arguments to the

$Revision: 0.4 $ June 1998 10

W3) / W3)

* function. These PDUs must be in the
* ARL DIS Manager PDU data structure format.
* (See vl_mfk_binaryDIS_ProbAll_NoNet() for passing other
* PDU data structures).
*
* RETURNS:
*
* Same as vl_mfkDIS_ProbAll().
*
* SEE ALSO:
* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . ..)
* float* vl_mfkDIS_ProbAll(EntityID, DetID)
*
* ***
* * *
* * NOTE: *
* * *
* * PDU arguments are in the form of a ARL DIS *
* * Manager PDU data structure format. *
* * *
* ***
*

*/
float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . .)

The following functions expect the same input as vl_mfk_ArlDIS_ProbAll() however, unlike
vl_mfk_ArlDIS_ProbAll() they each return only one probability and not all the probabilities of every
event occurring.

/*
- _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, . ..)
*
* Returns the probability of a K-KILL (catastrophic kill)
* and only a K-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
t parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an K-KILL and only a K-KILL.
*

*/

/*
- _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, . . .
*

$Revision: 0.4 $ June 1998 11

W3) W3)

* double _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, . ..)
*
* Returns the probability of an MF-KILL (both mobility and firepower kill)
* and only an MF-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an MF-KILL and only an MF-KILL.
*

*/

/*
- _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, . ..)
*
* Returns the probability of an F-KILL (fire power kill)
* and only an F-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an F-KILL and only an F-KILL.
*

*/

/*
- _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, . ..)
*
* Returns the probability of an M-KILL (mobility kill)
* and only an M-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which

$Revision: 0.4$ June 1998 1 2

W3) W3)

* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an M-KILL and only an M-KILL.
*/

/*
- _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..)
*
* Returns the probability of No further Damage
* occuring and and only No further Damage occuring.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of NoDamage.
*/

/* -----------------v~_mfk_binaryDIS...() f u n c t i o n s - - - - - - - - - - - - - - - * /

/*

- vl_mfk_binaryDIS_Result_NoNet()
*
.*
* VL_Result vl_mfk_binaryDIS_Result_NoNet(VLSetParam_t itype, . ..)
*
* This function returns an MFK kill type (i.e. one of Mobility, Fire
* Power, Mobility & Fire, Catastrophic Kills, or No Damage) as the result
* of the interaction of the target and threat.
*
* The target, threat, and their environment are determined by the passed
* arguments. The VLSetParam_t data object (itype) identifies the
* required inputs needed to prepare a vulnerability assessment. (Namely
* it identifies the variables that are being passed, which are required
* to set the initial conditions of the vulnerability assessment.)
*
* In the event that itype == VL_PARAM_SET_METH_DIS_HitToKill
* It indicates that passing the DIS PDUS
* Entity State (target)
* Entity State (firer)
* FirePDU
* DetonationPDU
*

$Revision:0.4 $ June 1998 13

W3)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

W3)

shall be sufficient to set the VL parameters to return the
correct result from the lookup table (or other data source).

The passed arguments to the function are pointers to DIS PDU
structures whose bits are packed into a continuous binary string
of bytes. (That is, the arguments are pointers
to the binary PDU string argument as it would "appear" as a DIS
broadcast PDU on the DIS network).

This function returns. the result of the target/threat/detonation
interaction

one of the following results are returned:

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

PS_ERROR

The vl_library random number generator (vl_drandom())
randomly select a point in the probability space (and
"result".

See also:

is used to
hence return the

VL_Result vl_mfkDIS_Result(int*flg, int EntityID, int DetID
VL_Result vl_mfk_ArlDIS_Result_NoNet()

********************************R*****************
*

NOTE: *
*

PDU arguments are in the form of a continuous *
BINARY STRING. *

*

*/
VL_Result vl_mfk_binaryDIS_Result_NoNet(int*flg, VLSetParam_t itype, . . . 1

/*

*
*
*
*
*
*
*
*
*

vl_mfk_binaryDIS_ProbAll_NoNet()

float * vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, . . .)

This function returns the a static array containing probabilities of
certain kill levels. The function's behaviour and return values
are the same as the function vl_mfkDIS_ProbAll().
The only difference is the parameter set passed to the function.
This function expects the following parameters:

$Revision: 0.4 $ June 1998 14

.

vu31

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The first parameter argument is of type VLSetParam_t.

This type is used to indicate which data sources (inputs)
are sufficient to set the VL parameters in order to be able
to return the correct result from the lookup table
(or other data source). These indicated data sources
shall then be the 2nd, 3rd, 4th, . . . etc. parameter arguments
to the function.

To date there are only two VLSetParam_t types defined:

VL_PARAM_SET_METH_DIS_HitToKill
VL_PARAM_SET_METH_DIS_ProxKill

They both require the same arguments. Namely, pointers to
the DIS PDUS:

Entity State (for the target),
Entity State (for the firer),
Fire PDU,
and Detonation PDU.

These PDUs will be the 2nd, 3rd, 4th, and 5th arguments to the
function. These PDUs must be in "binary format" that is in
the same bit format that DIS PDUs are trasported in when
communicated on the DIS network. This means that each
PDU argument points an address contains a continuous
array of bits representing the content of the PDU.

(See vl_mfk_ArlDIS_ProbAll_NoNet() for passing other
PDU data structures).

Example:

assumes tgt_entity_state_pdu, shooter_entity_state_pdu,
fire_pdu, detonation_pdu

are pointers (void *)

E float *probability-space;

probability-space =
vl_mfk_binaryDIS_ProbAll_NoNet(

I

I

1;
3

RETURNS:

VL_PARAM_SET_METH_DIS_HitToKill
tgt_entity_state_pdu
shooter_entity_state_pdu .
fire_pdu
detonation_pdu

Same as vl_mfkDIS_ProbAll().

$Revision: 0.4$ June 1998 15

W3) W3)

* SEE ALSO:
* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . ..)
* float* vl_mfkDIS_ProbAll(EntityID, DetID)
*
* ***
* * *
* * NOTE : *
* * *
* * PDU arguments are in the form of a continuous *
* * BINARY STRING. *
* * *
* **
*

*/
f l o a t * vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, . . .)

The following functions expect the same input as vl_mfk_binaryDIS_ProbAllO however, unlike
vl_mfk_binaryDIS_ProbAll~ they each return only one probability and not all the probabilities of every
event occurring.

/*
- _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, . ..)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Returns the probability of a K-KILL (catastrophic kill)
and Only a K-KILL.

The

and

parameters passed to this function are the same as passed to
vl_mfk_ArlDIS_Result_NoNet()
vl_mfk_ArlDIS_ProbAll_NoNet()

Namely an indentifier (itype) telling the server which
parameters are needed to set the initail state of the vulnerabilty
analysis (and hence which variables will follow as arguments).

RETURNS:
a number LESS THAN 0 on an error,
otherwise the probability of an K-KILL and only a K-KILL.

*
*
*
*
*
*
*
*
*
*

*

NOTE: *
*

PDU argurments are in the form of a continuous*
BINARY STRING. the argurment list consists of*
a pointer (to the PDU in binary form) followed*
by the length of the PDU string (in bytes) *

*

see: vl_mfk_binaryDIS_...() functions *
*

*/

$Revision: 0.4 $ June 1998 16

.

.

W3)

/*
_ _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, . ..)
*
* Returns the probability of an MF-KILL (both mobility and firepower kill)
* and only an MF-KILL.
*
*. The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()

. *
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an MF-KILL and only an MF-KILL.
*

*/

/*
* _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, . ..)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Returns the probability of an F-KILL (fire power kill)
and only an F-KILL.

The parameters passed to this function are the same as passed to
vl_mfk_ArlDIS_Result_NoNet()

and vl_mfk_ArlDIS_ProbAll_NoNet()

Namely an indentifier (itype) telling the server which
parameters are needed to set the initail state of the vulnerabilty
analysis (and hence which variables will follow as arguments).

RETURNS:
a number LESS THAN 0 on an error,
otherwise the probability of an F-KILL and only an F-KILL.

*/

/*

_ _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype,
*
* Returns the probability of an M-KILL (mobility kill
* and only an M-KILL.
*
* The parameters passed to this function are the same
* vl_mfk_ArlDIS_Result_NoNet()

. . . 1

1

as passed to

$Revision: 0.4 $ June 1998 17

W3)

* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an M-KILL and only an M-KILL.
*/

/*
- _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..)
*
* double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Returns the probability of No further Damage
occuring and and only No further Damage occuring.

The parameters passed to this function are the same as passed to
vl_mfk_ArlDIS_Result_NoNet()

and vl_mfk_ArlDIS_ProbAll_NoNet()

Namely an indentifier (itype) telling the server which
parameters are needed to set the initail state of the vulnerabilty
analysis (and hence which variables will follow as arguments).

See Also:
double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..)
double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype, . ..)
double _vl_mfkDIS_ProbNoDamage(EntityID, DetID)

RETURNS:
a number LESS THAN 0 on an error,
otherwise the probability of NoDamage.

.

*/

The remaining API calls are utility functions.

vl drandomo and VI drandom_seedO are used to generate pseudo random numbers. The random
i&ber generater is used to select retumed results for the "ResuZf" functions (vl_mfkDIS_ResultO,
vl mfk ArlDIS_Result_NoNetO, and vl_mfk_binaryDIS_Result_NoNetO). The function vl_GetRe-
s&Ert&Value() may be used to debug at an application level when unexected results are returned.
vl mfk_directFireIsAHitO applies specifically to "direct tie" munitions to see if they hit the target in
question. The serverusesthis functiontopossibly overidethelook-up table results. Forexampleifabullet
lands within a lethal radious of a target, however, the target is oriented in such a manner that the bullet actu-
ally missed. (And hence, vl_mfk_directFireIsAHit~ returns a FALSE result. Then the server will overide
the look-up table’s damage result and return a “No Damage” result instead. Assuming, of course, that a hit
is required to cause damage. vl_mfk_directFireIsAHit(l does no geometric calculations but rather it is
reliant on the “detonation result” field of the deonation PDU to determine if a bullet misses of hits a target.
VL m&DIS ResultGenericRandomDrawO is used to return (an iuvalid) result in the event that look-up
tables or validdata cannot be accessed for some reason.

$Revision: 0.4 $ June 1998 18

* has
*
*
* (e
*

.

/* -----------------vl_..() Utility functions____--________----*/

/*
_ _vl_drandom()
*
* double _vl_drandom(void)
*
* returns a random number on [O,ll
*
* See also: _vl_drandom_seed()
* (to re-seed pseudo random sequence).
*

. */
double _vl_drandom(void)

/*
- _vl_drandom_seed()
*
* void _vl_drandom_seed(int seed)
*
* re-seeds the pseudo random number sequence using the integer "seed"
* (Don't use a seed of 0).
* See also:
* _vl_drandom()
*/

void _vl_drandom_seed(int seed)

/*
_ vl_GetResultErrorValue();
*
* int vl_GetResultErrorValue(void);
*
* Called only (and immediately) after an unsuccessful attempt

been made to one of the
"float *vl_mfk_SOMETHING_ProbAll(...)" functions

g. calling any one of:

*
*

float * vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID);
float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . ..)
float * vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, . ..)

* have returned a NULL
*

. , * RETURNS an error value (as follows:
*
* VL_RSLT_ERR_GENERAL /*
* VL_RSLT_SUCCESS /*
* VL_RSLT_ERR_NO_TABLE /*
* VL_RSLT_ERR_CURRUPT_TABLE /*
* VL_RSLT_ERR_NO_ENVIRON_DATA /*
* VL_RSLT_ERR_UNKNOWN_TARGET /*
* VL_RSLT_ERR_UNKNOWN_THREAT /*
*

*/
int vl_GetResultErrorValue(void)

Unknown error. */
success - NO error. */
No Table. */
Corrupt Table. */
No Environment Data. */
Unknown Target. */
Unknown Threat. */

$Revision: 0.4 $ June 1998 19

W3)

/*
_ vl_mfk_directFireIsAHit()
*
* int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result)
*
* This function returns TRUE if the result field indicates a
* "hit" with a direct fire (or prox-fuze) weapon.
*
* The argument DIS_det_result is the IEEE 1278.1 (DIS) Detonation
* Result field (An 8 bit unsigned integer)
* [the type DetonationResult is defined in the ARL DIS Manager
* "pdu_basic.h"].
*
* Note: for a kinetic energy munitions
* (That is type VL_Meth = "DIS HitToKi.11"
* in the DAMAGE_SOURCE_META_DATA_FILE).
* only:
* 1 Entity Impact
* 2 Entity Proximate Detonation
* 5 Detonation
*
* will currently have an effect on
* the targetted entity.
*

*/
int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result

/*
- VL_mfkDIS_ResultGenericRandomDraw()
*
* VL_Result VL_mfkDIS_ResultGenericRandomDraw(void)
*
* A generic probabilility of a kill given a hit
* result is returned (but is not authoratative).
* Results are drawn from a fixed distribution.
*
* This is used as the default answer when a target or threat
* is unknown, or else if the V/L data set cannot be found or
* can be found but cannot be interpreted correctly.
*
* RETURNS
*
* An "MFK" probability result (as described
* in vl_mfkDIS_Result()). I.E. one of the
* following values are returned
*
* PS_MFK_M
* PS_MFK_F
* PS_MFK_MF
* PS_MFK_K
* PS_MFK_NODAMAGE
*/

VL_Result VL_mfkDIS_ResultGenericRandomDraw(void)

$Revision: 0.4$ June 1998

W3)

,

20

W3)

SEE ALSO
Other DIS Lethality server components:

vlparam(3) db(3)

AUTHOR
Geoff Sauerbom <geoffs@url.mil> , US Army Research Lab. 1997,1998.

.

$Revision: 0.4 $ June 1998 21

VLParam(3) VLParam(3)

NAME
vlp_setp_all_Munition_Frrn_DIS, vlp_zero_all_params, vlp_print_all_params

~P._ang_aspect, VLP_ang_attack ,VLP_tvel[31, VLP_impact[3], VLP_range, VLP_result, VLP_tar-
get.3 VLP_target_type, VLP_li.rer_id, VLP_firer_type, VL.P_threat_id, VLP_threat_type

SYNOPSIS
#/include <vlparam.h>

extern Float32 VLP_ang_aspect, VLP_ang_attack ,VLP_tvel[3], VLP_impact[3];
extern Float64 VLP_range;
extern int VLP_result;
extern EntityID VLP_target_id;
extem EntityType VLP_target_type;
extem EntityID VLP_fimr_id;
extem EntityType VLP_tlrer_type;
extem EntityID VLP_threat_id;
extem EntityType VLP_threat_type;

int vlp_setp_all_Munition_Frm_DIS(PDU*, PDU*, PDU*, PDU*);/* Arl DIS Manager */
void vlp_zero_all_params(void); /* initialize parameters */
void vlp_print_all_params(void); /* Display settings of all VL parameters */

DESCRIPTION
The Vulnerabilty Parameter sub-layer of the DIS lethality server. This layer is the means by which vul-
nerability data look-up functions determine the initial conditions for the vulnerability calculation.

The VLParam layer serves to insolate the V/L result data from the virtual environment (initial conditions
to the vulnerability analysis). (This separation allows different DIS networking packages to be swapped in
an out of the server; and even allowing for a non-DIS networking paradigm, such as I&A, to be used).

When a new look-up function is written for data of a certain format, the author of the look-up function will
have to reference this layer. The variables defined here are the only means by which the initial conditions
relevant to the V/L calculation may be determined.

If there are crucial parameters missing from this layer, then those parameters will have to be added. Fol-
lowing this, API functions which set these parameters (prior to calling the look-up function) need to be
modified or added to the vLparam(3) API layer of the lethality server. As an example the source code for
the APIfuncrion vlp_setp_all_Munition_Frm_DIS() muy be examined. The function vlp_setp_all_Muni-
tion_Frm_DISO sets the VLparam layer parameters based on inputs provided by Entity State, Fire, and
Detonation PDUs. Finally, the reader (result look-up function) will have to be modified (or written) that
can access the newIy added parameters in order to look-up the proper results from the lethality data set.

Data Dictionary:

Note: “target” refers to the queried entity who’s resulting vulnerability is being asked for of the server.
EntityID - is the DIS Entity ID record (site, application, entity).

IEEE 1278.1

float32 - 32bit floating point number.
float64 - 64bit floating point number.
enum - a unitless enumerated valu'e.

$Revision: 1.3 $ June 1998 1

.

.

vLparam(3)

Entity Coordinate system:

n -z (Entity's coordinate system used
I Note that "up" is -Z
I
I
['top'
I
I

../_/I.. entity
/ 1-1 ====== 'front'

I I I _______________>

vLParam(3)

in IEEE 1278.1

I/-I/ X
/ I

/ I
/ I

/ I
/ V

/ +z
/

/
I /

Y

PARAMETER TYPE UNITS MEANING
____----- ____ ____- ____________________~___~~~~~~~~~~ ______

VLP_ang_aspect float32 radians 'horizontal' orientation of munition's
directional attack (aspect angle)
(relative to the target entity).
(Rotation is about the target entity's
positive "2" axis in a clockwise
direction). The positive direction of
rotation about an axis is defined as
clockwise when viewed towards the
positive direction along the axis of
rotation.

$Revision: 1.3 $

Clockwise direction: For example, a 90
degree (PI/2 radian) clockwise rotation
about the z axis will make the positive
x-axis co-linear to where the positive
y-axis was before the rotation.

Targetted entity's coordinate system is
that of IEEE 1278.1 with the positive
X-Axis axis extending from the "front"
of the entity. Positive Z-Axis
extending "down". Positive Y-Axis
extending out of the entity's "right".

See Also: VLP_ang_attck.

June 1998

vLParam(3)

VLP_ang_attck float32 radians

VLP_impact[3] float32 meters

VLP_tvel[31 float32 m/s

VLP_range float64 meters

VLP_result int enum

vLParam(3)

"Angle of attack". 'vertical' orientation
of munition's directional attack (aspect
angle) (relative to the target).
(Rotation is about the target entity's
new "X" axis after having been rotated
by the angle VLP_ang_aspect.

See Also: VLP_ang_aspect.

Location of munition impact point
relative to the target. Location is in
target entity's coordinate system,. (IEEE
1278.1)

Terminal velocity of the munition
immediately before impact. This is in
the DIS world coordinate system linear
velocity vector record 1278.1 Units
are in meters per second.
(Same as the "velocity" field of the
DIS Detonation PDU).

(line of sight) range from the target to
the origin of the munition. (i.e.
distance from where the munition was
fired to where it detonated).

The DIS Standard states that the "range"
field in the Fire PDU is set to 0 if the
range is unknown. If this is the case,
then the VL server shall attempt to
guess at the approximate range by
setting the VLP_range to the distance
between the target and firing entity (if
known). If this approximation fails for
some reason, then VLP_Range shall remain
set to 0.

result of the detonation (if known)
the enumeration are according to the
DIS standard (IEEE 1278.1)

Note: for a kinetic energy munitions
(That is type VL_Meth = "DIS HitToKill"
in the DAMAGE_SOURCE_META_DATA_FILE).
only:

1 Entity Impact
2 Entity Proximate Detonation
5 Detonation

will currently have an effect on
the targetted entity.

.

$Revision: 1.3 $ June 1998

vLParam(3) VLParam(3)

‘ VLP_threat_id EntityID enum

VLP_target_id EntityID enum

VLP_target_type EntityType enum

VLP_threat_type EntityType enum

Value Description
0 Other
1 Entity Impact
2 Entity Proximate Detonation
3 Ground Impact
4 Ground Proximate Detonation
5 Detonation
6 None
7 HE hit, small
8 HE hit, medium
9 HE hit, large
10 Armor-piercing hit
11 Dirt blast, small
12 Dirt blast, medium
13 Dirt blast, large
14 Water blast, small
15 Water blast, medium
16 Water blast, large
17 Air hit
18 Building hit, small
19 Building hit, medium
20 Building hit, large
21 Mine-clearing line charge
22 Environment object impact
23 Environment object proximate detonation
24 Water Impact
25 Air Burst

Targeted Entity's ID. (site, host, id)
If there was an entity impact
indicated by the= VLP_result field,
then this is the entity which was
impacted.

Type of entity Targeted. (Entity Enumeration)
If there was an entity impact
indicated by the= VLP_result field,
then this is the type of entity which
was impacted (e.g. "T72Ml", "M48").

Threat Entity's ID. (site, host, id)
If the treating object (impacting or
detonating object) is an entity,
then this is its Entity's ID. (site, host, id)
(Normally the threat is not an entity,
but an inanimate munition, in which case
the VLP_threat_id

Type of threating object. (Entity Enumeration)
(Normally the threat is a munition
in which case this field will be derived
from the DIS Burst descriptor field of
the detonation and fire PDUs).

$Revision: 1.3 $ June 1998 4

vL#Param(3) vLParam(3)

VLP_firer_id EntityID enum If the originating entity (the shooter)
can be determined, then this is its
entity ID.

VLP_firer_type EntityType enum If the originating entity (the shooter)
can be determined, then this field
identifies the DIS entity type.

Thevulnerabilitytablereaderfunctionmustderiveallofit'sreqluiredenvironmentalinformationfromthese
data structures. Ifitrequires adclitionalenvironmentaldata, then the lethality server code willhaveto be
modifiedtoprovidethatdata.

Synopsis ofthe APIfunctions arenow giveninthefollowing order:

vlp_setp_all_Munition_Frm_DIS()
vlp_zero_all_params()
vlp_print_all_params()

/*
* vlp_setp_all_Munition_Frm_DIS(\

I
*
* int vlp_setp_all_Munition_Frm_DIS(PDU *es_tgt,
* PDU *es-firer, PDU *pfire, PDU *pdet)
*
* Map all DIS data (from the pdu's) to their appropriate parameter.
* *NOTE* Assumes PDUs are pointers to ARL DIS Manager PDU structures.
*
* This function uses the data found in the Target and Firer's
* Entity State, the Fire, and the Detonation Protocol Data Units (PDUs)
* to set the appropriate VLparam layer parameters.
*
* Returns 0 on an error.
*

*/

/*
- vlp_zero_all_params()
*
* void vlp_zero_all_params(void)
*
* initialize all parameters.
* sets to zero all parameters in the VLP layer
*

*/

/*
- vlp_print_ali_params()
*
* void vlp_print_all_params(void)
*
* Display settings of all VL parameters ValUeS.
* These values are used by table lookup functions to parse
* their individual vulnerability tables. See definitions for all
* the named variable in the DIS Lethality server's data dictionary.

$Revision: 1.3 $ June 1998 5

vLParam(3) vLParam(3)

*
* See Also :
* vlp_zero_all_params();
* _vlp_setp_....functions();
*

*/

BUGS
The global variables should be hidden. APIs should be written instead to set and get parameter values. (e.g.
_vlp_setp_target_id(), _vlp_getp_target_id()). Most of these have already been written, but since they the
set was incomplete, the naked global variables are left exposed for now. (Another reason for leaving them
exposed for now is that access time is slightly faster when not having to go through the overhead of calling
an extra function layer).

SEE ALSO
Other DIS Lethality server components:

vl(3) db(3)

AUTHOR
Geoff Sauerbom

$Revision: 1.3 $ June 1998

cgeo~@urZ.miZ> , US Army Research Lab. 1997,1998.

6

VLS_DB_Il’IIT(5) VLS_DB_INIT(S)

NAME
dis_mon

DESCRIPTION
vls_db_init.ini (This is the same initialization file needed by the data manager (db) API layer of the DIS
Lethality server. This is an IS0 646,7 bit (ASCII) file. Lines whose first non-white spaces character is the
‘Y” symbol are ignored. The file consists of name-value pairs which define the file names to be read in
order to initialize certain data structures used by the DIS Lethality server’s data manager (db) API layer.
File names specified in vls_db_initini are assumed to be found relative to the $VLS_HOMEData/Initi
directory. VLS_HOME is an environmental variable which must be set to the root (home) directory of the
DIS Lethality server. If not set, then the value of $VLS_HOME is taken as the current working directory
(“J”).

An example vls_db_init.ini initialization file follows:

$Id: vls_db_init.!j,v 0.5 1999/01/21 21
#

27:50 geoffs Exp geoffs $

it.ini",
This file is input to db_init() rout ine .
e.g. if this file was called "./vls_db_in
then calling the API db_init():
#
db_init("./vls_db_init.ini");
#
would initialize the database.
#
syntax:
#
DIS_ENTITIES_FILE - the file containing all DIS Entity ID's
file's format in is comma separated fields.
(there are 15 fields. The last field is the

record number. the first 14 fields comprise
the 7 DIS "Entity Type" enumerations. These are
ordered in pairs of enumeration integer,
followed by ascii text enumeration description.
#
DIS_AUXILIARY_ENTITIES_FILE - user added (or non-standard dis entity ID's_
#
DAMAGE_SOURCE_META_DATA_FILE - contains pointers to where lookup
tables can be found.
#
DIS_ENTITIES_FILE ./dis2_0_4_ids.csf
DIS_AUXILIARY_ENTITIES_FILE ./dis_entities_aux.csf
DAMAGE_SOURCE_META_DATA_FILE ./tst_tbls_HEAT.csf

Identifiers for the name-value pairs are as follows:

DIS_ENTITIES FILE The file name which follows this keyword identifies the file containing all DIS
Entity Enumerat&s. Currently the entity enumeration file format in is comma separated fields. One
record appears per line. There are 15 fields per record. The last field is the record number. the Grst 14
fields comprise the 7 DIS “Entity Type” enumeration fields. These are ordered in pairs of enumeration inte-
ger, followed by ASCII text enumeration description. The enumeration integers correspond to the value for
the 7 DIS “Entity w’ enumeration fields (Kind, Domain, etc.) as see in the table below.

$Revision: 0.5 $ March 1998 1

VLS_DB_INIT(5) VLS_DB_INIT(S)

DIS ‘Entity ‘lype” Enumeration
Field Name Bit Length
Rind 8
Domain 8
country 16
Category 8
Subcategory 8
Specific 8
Extra 8

The field that follows each enumeration containts a brief quoted text string to name to that enumeration
value, Enumeration values and their names placed in the DIS_ENTITIES_FILE file should only be enu-
merations found in the DIS enumeration standard (see: http://siso.sc.ist.ucf.eduU.is/dis-dti). The
DIS_AUXILIARY_ENTITIES_F’ILE file can be used to add non-standard and experimental enumera-
tions.

A (very) short excerpt of an example DIS_ENTITIES_EILE file follows:
#

DIS 2.0.4 Enumerations (1995)

contained in the IEEE 1278.1-1995 Standard for DIS

#

Derived from the DIS Data Dictionary.

l,"Platform",l.OO,"Land",225,"United States",1.00,"Tank",1.00," Ml Abram”,l.OO,“Ml Abramsn,l.OO,"VERSION 5",1

l,"Platform",l.OO,"Land",225,"United States",l.OO,"Tank",2.00, " M60 Main Battle Tank (MBT)",l.OO," M60A3",1.00,"",2

1,"p1atform",1.00,"Land",225,"United States",l.OO,"Tank",4.00," M48 medium tank",l.OO," M48C",1.00,,3

1,wPlatform",1.00,"Land",225,"tJnited States",1.00,"Tank",4.00," M48 medium tank",2.00," M4EA1",1.00,"",4

DIS_AUXILL4RY_ENTITIES FILE Identifies the file to be used for adding any additional (auxiliary)
DIS enumerations. Sometimes if is handy for adding exercise specific entities or entities not in the latest
release of the DIS enumeration standard. The DIS_AUXILIARY_ENTITIES_FILE file follows the same
format as the DIS_ENTITIES_FILE file.

DAMAGE_SOURCE_META_DATA_F’ILE This denotes the file which contains references to lethality
data sources. This tells the the data manager tihere to find look-up tables associated with different tar-
get/threat combinations. The data format found in this file is currently a comma-separated field list. There
are five fields which identify the following items.

The threatened entity (in DIS standard enumeration>.
The threat (in DIS standard enumeration).
The type of V/L analysis method to be used (i.e. MFK direct or indirect fire).
The table format identifier.
The table’s location (in URL format).

The V/L analysis method must be a “quoted” string as identified in the array VL_Meth_List[] (source code
$VLS_HOMWsrc/Db/vl_meth.h). A short excerpt from a DAMAGE_SOvRCE_META_DATA_EILE
follows:

#
DIS enumerations are IEEE 1278.1-1995 Standard.
Note that the file URL location is taken relative
to the $VLS_HOME directory.
#--next line's tgt and threat are: Soviet 125mm KE Threat VS. a T-80 target.
1 1 222 1 1 1, 2 2 222 2 11,"DIS HitToKill","IUA_KE", ufile:/Data/Tables/IUA/smplKE.iua~

$Revision: 0.5 $ March 1998 2

VLS_DB_INIT(S) VLS_DB_INIT(S)

#--next line's tgt and threat are: Soviet 12Omm HEAT-FS VS. a T-80 tgt.
1 1 222 1 1 1, 2 2 222 2 18,"DIS HitToKill","IUA_HEAT", "file:/Data/Tables/IUA/smpl
#--next line's tgt and threat are: AT-5 Spandrel missile VS. a T-80 tgt.
1 1 222 1 1 1, 2 2 222 1 7,"DIS HitToKilln,l'IUA_HEAT", "file:/Data/Tables/IUA/smpl

Note that High Explosive Anti-Tank (HEAT) munitions are designated as using the ‘DIS HitToKill” vulner-
ability methodology. This means they have to actually hit the target in order for the server to look-up
lethality effects in the look-up tables. This is due to the type of vulnerability data that is being used (in the
look-up table). The vulnerability data that is being used are treated as “probability of a kill” (at some level)
given a hit on the target. If therefore the munition actually missed the target, it would not make sense to
used the data in this look-up table to describe the results of the event. (Even if it was only a near miss that
detonated right next to the target). The designation ‘DIS ProxKill” could be used if the data set was one
which did not require a “Hit” directly on the target.

FILES
$VLS_HOMJX/Datahits_db_init.ini

SEE ALSO
Other DIS Lethality server components:

dis_mon(l), db(3), VI(~) and $VLS_HOMEkrc/Db/vl_meth.c within the vl(3) API in particular.

Author
Geoff Sauerbom <geo~@url.miZ> , US Army Research Lab. 1997,199S.

$Revision: 0.5 $ March 1998 3

VLSCLIlzNT(3) VLSCLlENT(3)

NAME
vls_open, vls_close, vls_send, vls_read

SYNOPSIS
##include Wserver.h”

int vls_open(char *host);
int vls_close(void);
int vls_send(char *data);
int vls_read(char **ptr);

DESCRIPTION
vlserver client library functions. V/L server client applications must call these functions to communicate
with a running DIS V/L Communications Server.

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

vls_open()

int vls_open(char *host)

This API is used by client programs to open a connection
to the DIS V/L server. The argument "host" is an
ASCII null terminated string that is the name (or IP address)
of the computer which is running the V/L server.

REQUIRES:.
The DIS vlserver program to already be running on the "host"
computer.

RETURNS

TRUE (1) if connection
FALSE (0) if connection

SEE ALSO: /etc/hosts

is successful.
was unsuccessful.

*/
int vls_open(char *host);

/*

*
*
*
*
*
*
*
*
*
*
*

vls_close()

int vls_close(void)

This API used by client programs to
terminate connection with V/L server.

RETURNS

TRUE (1) - (* on a success close. *)
VL_BAD_NETCONN - (* if there never was a connection to begin with *)

*/
i n t vls_close(void);

/*

$Revision: 0.3 $ June 1998 1

vLSCLIENT(3) vLSCLlENT(3)

*
*
*
*
*
*
*
*
*
*
*
*
*
*

vls_send()

int vls_send(char *data)

This routine takes a data msg received from a client
and sends it the the VL server. It is up to the client
to make sure that the message is a legal message to the
server. The message a null terminated ASCII string.

For the proper syntax of see the manual page: vlserver(1)

RETURNS 1 - on success
VL_BAD_NETCONN - if there is not a connection established.

less than zero - on failure.

*/
int vls_send(char *data);

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

vls_read()

int vls_read(char **ptr)

This function checks to see if the VL Server has sent data
back to the client. (Usually because the client has posed
a query to the server). If a message has been sent, then
the message type that was sent from the VL Server will be
the returned value of the function (this identifies the
message type).

In addition to the message type, the message itself is passed
to the client by setting the the argument "ptr" to point to
some data message. (However, not all message types will pass
message and set the "ptr" argument.) If a message is
passed, then it is an ASCII (NULL terminated) string. This
string is allocated memory and it is the responsibility
of the calling application to free it (via free()) when
no longer need. The interpretation of the string message
depends on the message type value returned.

Client vulnerability queries are usually answered by a
VL_MSG_TO_CLIENT message type. (Unless an exception
occurred). An improperly formatted query returns
VL_BAD_QUERY. If the VL server stopped running for some
reason VL_SERVER_SHUTDOWN is returned. If the client sends
too many quarries before looking for an answer, (or if too
many clients are queuing faster than the server can respond,
it is possible for the server to end up dropping queries and
returning a VL_MSG_OVERFLOW message type. If the client
failed to call vls_open() prior to forming a query to the
server, then a VL_BAD_NETCONN message type is returned. If
the client application mis-formatted a query, then the a
VL_BAD_QUERY message type is returned. How a proper query
is formated is explain in the vlserver(1) manual page.

$Revision: 0.3 $ June 1998 2

vLSCLIENT(3) vLSCLIENT(3)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

RETURNS

The function returns a message type and may set the
argument flptr" to point to a text message. Values
(message types) returned are one of the following values:

Message Type
-__---------

VL_NO_DATA t* no message (yet?) . ..keep trying... *)
VL_MSG_TO_CLIENT (* incoming MSG from server *)
VL_SERVER_SHUTDOWN (" server shutting down *)
VL_MSG_OVERFLOW (* too many queries in server's que *)
VL_BAD_QUERY t* couldn’t format or understand query *)
VL_BAD_NETCONN (" Never connected - call vls_open() 1st. f)

NOTE: The returned message point to by "ptr"
is allocated memory and it is the responsibility
of the calling application to free it (via free()) when
no longer need.

SEE ALSO:

vlserver(1)

*/
int vls_read(char

EXAMPLECODEEXCERFT

**ptr);

The code except would be linked with the 1ibvlsclient.a library (via a compile option such as ‘I-lvlsclient”.
(i.e. cc examp1e.c -1vlsclient”).

##include “v1server.h”

int status, query-id,
char *srv_msg; /* will point to message return by server *I

I* code excerpt... *I
vls_send(“l echo hello world”);
while (VL_NO_DATA = (status=vls_read(&srv_msg)))

; /* null loop waiting for server to respond */
I* got a message back! *I
puWv_msg);
free(srv_msg);

/* sendanothermessage: */
vls_send("2 QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 1185 33086 1110 1185 33086 12”);
while (VL_NO_DATA = (status=vls_read(&srv_msg)))

; /* null loop waiting for server to respond */
/* got a message back *f
if (status = VL_MSG_TO_CLIENT) (

query-id = atoi(srv_msg);
if (query-id - 2) { /* 2 is the ID we sent with our 2nd call to vls_send() */

puts(‘%ot back an answer to our query!“);
printf(“Answer is: %sO,srv_msg);

$Revision: 0.3 $ June 1998

vLSCLIENT(3) vLSCLIENT(3)

>}
free(srv_msg);

SEE ALSO
Other DIS Lethality server components:

vlserver(l), vlexample_client.c - an undocumented example client program provided with the DIS Lethal-
ity server (look in $VLS_HOhWsrc/Server).

Author
Geoff Sauerbom <geoffs@urZ.mib , US Army Research Lab. 1997,1998.

$Revision: 0.3 $ June 1998 4

VLSERVER(1) VLSERVER(1)

NAME
vlserver

SYNOPSIS
vlserver [-P port#] [-VI

DESCRIPTION
vlserver (The DIS Vulnerability/Lethality Server front end) is a part of the a collective set of programs and

4 AFIs known as the DIS Lethality server. This application is a TCP/lF server for clients to the DIS Lethality

I
server. It works in conjunction with dis_mon (the DIS Damage Monitor). In fact vlserver does very little
processing itself, it merely passes client queries on to the.DIS Damage Monitor and returns the results.

L kserver must be started before dis_mon since vlserver both creates the shared memory link between the
two processes and communicates the location of that link to dis_mon.

OPTIONS
-P port# Where port# Is the port socket number where V/L server clients shall connect to the server.
(Default is port 4976).

-V Turn on verbose mode. Gives extra information printed to the local console.

PROTOCOL
client/server protocol is a very simple set of ASCII commands, queries, and responses.

All commands sent to the server by a client are preceded by an integer serial number (e.g. “3 ECHO hello
world”). The serial number has no significance to the server (other than it is required for proper syntax).
This same serial number is returned to client along with the server’s reply for that particular command. The
following are recognized commands a client may send to the server:

ECHO <string> Where cstring> is any text. The server returns &ring> to client.

SHMID The server returns the shared memory ID to client (see shmget(3), shmctl(3)).

VERSION The server returns server/client protocol version ID. This an identification associated
with a set of recognized commands a client may send to the server. (The client-server synatx lan-
guage version). VER Is a synonym for VERSION.

QUERY cQTYPE> cARG_TYPES> [arguments.. .]

This is the main query mechanism. The server returns an answer to a vulnerability query. The
format of the answer is specified by QTYPE where QTYPE is one the valid type specifiers (see
QTYFE). ARG_TYFES tells the server what kind of arguments will follow.

<QZYJ%??> specifies the form in which the query answer is to appear. Valid query types
are:

TYPE_mfkDIS_Result
TYF’E_mfkDIS_I’robAll
TYFE_mtkDIS_ProbK
TYPE_mfkDIS_ProbMF
TYPE_mtkDIS_ProbF
TYPE_mfkDIS_ProbM
TYPE_mtkDIS_ProbNoDamage

cARG_TYPES> tells the server what kind of arguments will follow. Currently the only
valid argument type is:

ARGS_m&DIS_IDS

$Revision: 0.3 $ Feb 1998 1

VLSERVJZR(1) VLSERVER(1)

ARGS_m#DZS_ZDS tells the server to expect ID arguments. (These IDS will specify the
DIS Entity ID and DIS Detonation Event ID relevant to the query. That is the arguments
shall be the DIS Identity of the threatened Entity followed by the DIS Identity of the Det-
onation event which poses a threat to the Entity.

Since DIS expresses these identities in the form of a set of triple integers (for: site, appli-
cation, id), then the arguments shall appear as six integers. (Two sets of triplets, one set
for the threatened (target ID) followed by another set for the Detonation event ID:

tgt_site tgt_app tgt_id event-site event_app event-id

An example query syntax:

123 QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 1185 33086 1110 1185 33086 12

This query asks the server to supply an WFK” type result for the entity 1185 33086 12 as a consequence of
detonation event 1185 33086 1110. The server might respond with something like:

123: 4 Q

“123:” matches the query ID that was passed to the server. ‘4 and 0” are the RESULT and FLAG codes
respectively. The following tables describe RESULT and FLAG codes for TYPE_mfkDIS_Result type
results:

RESULT
Numeric Enumerated Meaning

code equivalent
0 PS_MFK_M Mobility Kill
1 PS_MFK_F Fire Power Kill
2 PS_MFK_MF Mobility and Fire Power Kill
3 PS_MFK_K Catastrophic Kill
4 PS_MFK_NODAMAGE No Additional Damage
5 PS_ERROR unknown error

The FLAG returned may have the following values and meanings associated with them:

$Revision: 0.3 $ Feb 1998 2

VLSERVER(1)

$Revision: 0.3 $

VLSERVER(1)

FLAG return codes
Value Meaning

-1 Unknown error.

A generic pkh result is returned but is not authoritative.

In this case calling the function rpt_perror() might shed
some light on the source of the error. (This is an
internal vlserver library procedure whose purpose is
similar to perror()).

0 Success.

The pkh source for the referenced entity and threat
munition (as defined in the DAMAGE_SOURCE_META_DATA_FILE)
was successfully found, interpreted, and used in
the calculation of the returned (VL_Result) value.

1 No Table.

A generic pkh result is returned but is not authoritative.

A reference to a vulnerability source could not be found
in the DAMAGE_SOURCE_META_DATA_FILE for this
combination of entity and threat.

2 Corrupt Table.

A generic pkh result is returned but is not authoritative.

The the referenced vulnerability source data was found,
however there was an error when attempting to interpret
the data.

3 No Environment Data.

A generic plrh result is returned but is not authoritative.

Data describing the fire and detonation events were
never observed while monitoring the run time
environment.

Feb 1998 3

VLSERVER(1) VLSERVER(1)

Value
FLAG return codes

Meaning
4 Unknown Target.

A generic pkh result is returned but is not authoritative.

A reference to the threatened (targeted) entity could
not be found in the DIS_ENTITIES_FILE nor in the
DIS_AUXILIARY_ENTITlES_FlLE.

5 Unknown Threat.

A generic pkh result is returned but is not authoritative.

A reference to the threat munition could
not be found in the DIS_ENTITIES_FlLE nor in the
DIS_AUXILIARY_ENTITIES_FILE. (See vls_db_init(5)).

More example client commands and server responses:

client’s command server’s response
1 ECHO Hello World 1: Hello World
2VER 2: 19970930
3 FOO BAR 3: VLS_QUERY_SYNTAX_ERROR

BUGS
“Surely you aren’t serious.” ‘Yes I am....and don’t call me Shirley.”

SEE ALSO
Other DIS Lethality server components:

di_mgr(l), vlsclient(3), vls_db_init(5) vlexample clientexe vlexample_client.exe is an undocumented
example client program provided with the DIS Lethality server (look in $VLS_HOME/bin).

Author
Geoff Sauerbom <geo$s@arZ.miZ> , US Army Research Lab. 1997,1998.

$Revision: 0.3 $ Feb 1998 4

NO. OF
COPIES

2

NO. OF
COPIES ORGANIZATIONORGANIZATION

AMCOM MRDEC
ATTN AMSMI RD W C MCCORKLE
REDSTONE ARSENAL AL 35898-5240

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-62 18

1

CECOM
ATTN PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

1

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TA REC MGMT
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

CECOM
SP & TERRESTRIAL COMMCTN DIV
ATTN AMSEL RD ST MC M H SOICHER
FT MONMOUTH NJ 07703-5203

1

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LL TECH LIB
2800 POWDER MILL RD
ADELPHI MD 207830- 1197

US ARMY INFO SYS ENGRG CMND
ATTN ASQB OTD F JENIA
FT HUACHUCA AZ 85613-5300

US ARMY NATICK RDEC
ACTING TECHNICAL DIR
ATTN SSCNC T P BRANDLER
NATICK MA 0 1760-5002

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL D R WHALIN
2800 POWDER MILL RD
ADELPHI MD 20783-l 197 1 US ARMY RESEARCH OFC

4300 S MIAMI BLVD
RESEARCH TRIANGLE PARK NC 277091 DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL DD J J ROCCHIO
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

US ARMY SIMULATION TRAIN &
INSTRMNTN CMD

ATTN J STAHL
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3726

1

DOD JOINT CHIEFS OF STAFF
ATTN J39 CAPABILITIES DIV

CAPT J M BROWNELL
THE PENTAGON RM 2C865
WASHINGTON DC 20301

US ARMY TANK-AUTOMOTIVE &
ARMAMENTS CMD

ATTN AMSTA AR TD M FISETTE
BLDG 1
PICATINNY ARSENAL NJ 07806-5000

1

OFC OF THE DIR RSRCH AND ENGRG
ATT-N R MENZ
PENTAGON RM 3ElO89
WASHINGTON DC 20301-3080

US ARMY TANK-AUTOMOTIVE CMD
RD&E CTR
ATTN AMSTA TA J CHAPIN
WARREN MI 48397-5000

1

OFC OF THE SECY OF DEFNS
ATTN ODDRE (R&AT) G SINGLEY

ODDRE (R&AT) S GONTAREK
THE PENTAGON
WASHINGTON DC 20301-3080

US ARMY TRAINING & DOCTRINE CMD
BATTLE LAB INTEGRATION & TECH DIR
ATTN ATCD B J A KLEVECZ
FT MONROE VA 2365 l-5850

1

OSD
ATTN OUSD(A&T)/ODDDR&E(R)
ATTN R J TREW
WASHINGTON DC 20301-7100

NAV SURFACE WARFARE CTR
ATT-N CODE B07 J PENNELLA
17320 DAHLGREN RD BLDG 1470 RM 1101
DAHLGREN VA 22448-5 100

169

1

1

1

1

I

1

1

1

1

1

1

DARPA
ATTN B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203- 17 14

UNIV OF TEXAS
ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250
ATTN A TUCKER
AUSTIN TX 78713-8029

HICKS & ASSOCIATES, INC.
ATTN G SINGLEY III
1710 GOODRICH DR STE 1300
MCLEAN VA 22 102

ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250 A TUCKER
UNIVERSITY OF TEXAS
AUSTIN TX 78712

SPECIAL ASST TO THE WING CDR
SOSW/CCX CAPT P H BERNSTEIN
300 O’MALLEY AVE STE 20
FALCON AFB CO 80912-3020

HQ AFWA/DNX
106 PEACEKEEPER DR STE 2N3
OFFUTT AFB NE 68113-4039

APPLIED RESEARCH ASSOCIATES INC
ATTN MR. ROBERT SHANKLE
219 W BEL AIR AVENUE SUITE 5
ABERDEEN MD 21001

CDR US ARMY AVIATION RDEC
CHIEF CREW ST R7D (DR N BUCHER)
MS 243-4
AMES RESEARCH CENTER
MOFFETT FIELD CA 94035

ITT INDUSTRIES
ATTN CHARLES WOODHOUSE
2560 HUNTINGTON AVE
ALEXANDRIA VA 22303

ITT INDUSTRIES
ATTN MICHAEL O’CONNOR
600 BLVD SOUTH SUITE 208
HUNTSVILLE AL 35802

RAYTHEON SYSTEMS COMPANY
ATTN JOHN D POWERS
6620 CHASE OAKS BLVD MS 85 18
PLAN0 TX 75023

NO. OF
O R G A N I Z A T I O NCOPIES

NO. OF
COPIES

1

ORGANIZATION

OPTOMETRICS INCORPORATED
ATTN FREDERICK G SMITH
3 115 PROFESSIONAL DRIVE
ANN ARBOR MI 48 104-5 13 1

DIR US ARL
ATT-N AMSRL SL EP (G MAREZ)
WHITE SANDS MISSILE RANGE NM

88002

DIR US ARMY TRAC
ATTN ATRC WE (LOUNELL SOUTHARD)
WHITE SANDS MISSILE RANGE NM

88002

DIR US ARMY TRAC
ATT-N ATRC WEC JOE AGUILAR

CARROL DENNY DAVID DURDA
PETER SHUGART

WHITE SANDS MISSILE RANGE NM
88002

CDR TARDEC
ATTN AMSTA TR D MIS 207

FSCS
ROGER HALLE GEORGE SIMON

WARREN MI 48397-5000

CDR ARDEC
ATTN AMSTA AR FSS JULIE CHU

DON MILLER BILL DAVIS
PICATINNY ARSENAL NJ 07806-5000

DEFENSE THREAT REDUCTION AGENCY
AT-I-N SWE (WALTER ZIMMERS)
6801 TELEGRAPH ROAD
ALEXANDRIA VA 223 10

ABERDEEN PROVLNG GROUND

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LP (TECH LIB)
BLDG 305 APG AA

US ARMY EDGEWOOD RDEC
ATTN SCBRD TD J VERVIER
APG MD 21010-5423

170

NO. OF NO. OF
COPIES ORGANIZATION COPIES

8

26

1

DIR AMSAA
ATTN P DEITZ M BORROUGHS

1

B BRADLEY J BREWER
D HODGE D JOHNSON
R NORMAN A WONG

US ARMY RESEARCH LABORATORY 1
ATTN AMSRL WM BF J LACETERA

AMSRL WM BF G SAUERBORN (25 CYS)
BLDG 120

US ARMY RESEARCH LABORATORY
AT-I-N AMSRL SL BV R MEYER 1

AMSRL SL BV J ANDERSON
AMSRL SL BV C KENNEDY
AMSRL SL BV M MUUSS

BLDG 238

US ARMY RESEARCH LABORATORY
ATTN AMSRL M SMITH

AMSRL G MOSS
BLDG 321

DIR USARL
AMSRL WM W DR INGO MAY
LARRY JOHNSON
BLDG 4600

DIR USARL
AMSRL WM B A. HORST
BLDG 4600

DIR USARL
AMSRL-SL-B J SMITH
BLDG 328

ABSTRACT ONLY

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TP TECH PUB BR
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

COMMANDER
US ARMY MATERIEL COMMAND
ATTN AMCRDA TF
500 1 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

PRIN DPTY FOR TECH GY HDQ
US ARMY MATL CMND
ATTN AMCDCG T
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

ORGANIZATION

PRIN DPTY FOR ACQTN HDQ
US ARMY MATL CMND
ATTN AMCDCG A D ADAMS
500 1 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY CG FOR RDE HDQ
US ARMY MATL CMND

ATTN AMCRD BG BEAUCHAMP
500 1 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

COMMANDER
US ARMY MATERIEL COMMAND
ATT-N AMCDE AQ
5001 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

171

INTENTIONALLY LEFT BLANK

172

REPORT DOCUMENTATION PAGE Form Approved
O M B N o . 0 7 0 4 - 0 1 8 8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments r arding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate or Information Operations and Heports. 1215 Jefferson“3
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papework Reduction Project (0704-0188), Washington, DC 20503.

I. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1999 Final
1. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Distributed Interactive Simulation (DIS) Lethality Communication Server
Volume II: User and Programmer’s Manual PR: lL162618AHSO

i. AUTHOR(S)

Sauerborn, G.C. (ARL)

‘. PERFORMING ORGANIZATION NAME(S) AND ADDRESS 8. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 2 10 1 O-5066

I. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSORING/MONITORING

U.S. Army Research Laboratory AGENCY REPORT NUMBER

Weapons & Materials Research Directorate ARL-TR- 1775
Aberdeen Proving Ground, MD 2 10 1 O-5066

1. SUPPLEMENTARY NOTES

2a. DISTRIBUTION/AVAILABlLlTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

3. ABSTRACT (Maximum 200 words)

Volume 1 presented the distributed interactive simulation lethality communication server, a client-server approach to handling
battle simulation lethality. Although Volume 1 explained the approach and its benefits and limitations, it presented no
information about how to set up, run, or modify the server. In this volume, these vital (yet sometimes tedious) details are
provided.

1. SUBJECT TERMS 15. NUMBER OF PAGES
183

client server DIS lethality
degraded states distributed simulation vulnerability

16. PRICE CODE

7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified
NSN 7549-01-280-5500 173

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-19
298-l 02

